
Closure Calculus is Better than the Pure
λ-Calculus

Xuanyi Chew

29 September 2019

Contents

Contents 1

I Introduction and Preliminaries 4

1 Introduction 5
1.1 Of Lambda Calculi, Closure Calculus and The Pure λ-Calculus . 5
1.2 “Better” Means Simpler and Faster 8
1.3 Novel Contributions . 9
1.4 Significance of the Objectives to the Aims 9
1.5 Methods . 12
1.6 Tests For Success . 13
1.7 Structure of This Report . 13
1.8 Notation Conventions . 14

2 On Abstract Reduction Systems, Term Rewriting Systems and
Various Preliminaries 16
2.1 Terms . 20
2.2 Substitution . 22
2.3 Rewrite Rules . 22
2.4 Normal Forms . 23
2.5 Confluence and Termination . 23
2.6 Evaluation and Operational Semantics 24
2.7 Some Remarks on ARSs and TRSs 25

3 The Pure λ-Calculus 26
3.1 Terms . 27
3.2 Substitution . 28
3.3 Rewrite Rules . 29
3.4 Normal Forms . 31
3.5 Confluence and Termination . 32
3.6 Evaluation and Operational Semantics 34
3.7 Some Remarks on the Pure λ-Calculus 37

1

4 Closure Calculus 38
4.1 Terms . 39
4.2 Substitution . 42
4.3 Rewrite Rules . 43
4.4 Normal Forms . 44
4.5 Confluence and Termination . 45
4.6 Evaluation and Operational Semantics 47
4.7 Some Remarks on Closure Calculus 48

II Implementation and Comparisons 50

5 On Implementations and Fair Comparisons 51
5.1 Why Compare Reductions to Normal Forms? 51
5.2 On the Implementation of Operational Semantics in General . . 53
5.3 On the Implementation of the Lambda Calculi 54
5.4 δ-Terms and δ-Rules . 61
5.5 The Test and Benchmark Programs 62

6 Closure Calculus is Simpler 65
6.1 On the Simplicity of the Lambda Calculi 65
6.2 Complexity Metrics . 67
6.3 Closure Calculus Is Simpler To Implement 67

7 Closure Calculus Terms Reduce to Normal Forms Faster 70
7.1 Performance Metrics . 70
7.2 Closure Calculus Has Fewer Meta Operations 71
7.3 Closure Calculus is Faster; Uses Less Memory 73
7.4 Further Analysis . 75

III Implications 78

8 Interesting Artefacts of Closure Calculus 79
8.1 Natural Numbers . 79
8.2 List and Pair . 83
8.3 On The Church-Encoded pred . 84
8.4 Evaluation Functions With Local Variables 86
8.5 Extracting the Body of an Abstraction: 88
8.6 Concerning Identity . 88

9 Discussions 90
9.1 What Does This Mean For Programming Language Theory . . . 90
9.2 Three Potential Objections . 91
9.3 A Survey of Compilation Methodologies for Popular Program-

ming languages . 91
9.4 Answering the Objections . 92

2

9.5 On The Oddity of x 7→ x . 94

10 Conclusion 97

Bibliography 98

3

Part I

Introduction and
Preliminaries

4

Chapter 1

Introduction

Closure Calculus (Jay 2018) - a recently introduced lambda calculus - is both Reader Note:
Are you able to
tell that the first
sentence is B.J’s
“That...” thesis
statement in
disguise?

simpler and faster than the pure λ-calculus. This is attributable to the fact
that Closure Calculus has no meta-theory requirement. This leads to simpler
implementations and consequently, faster reduction to normal forms. In this
regard, it is better than the pure λ-calculus.

This has some implications for programming language design, which this
report alludes to. The majority of this report is focused on the comparisons
between Closure Calculus and the pure λ-calculus across a number of metrics.
However, that Closure Calculus being better than the pure λ-calculus has a
practical implication, thus the design of the comparisons were motivated by the
potential implications.

The concepts (lambda calculi, reduction, etc.) and notions (simpler and
faster) will be given more formal treatment and careful considerations in the
chapters to come. For now it is sufficient to give an informal introduction as
follows.

1.1 Of Lambda Calculi, Closure Calculus and The
Pure λ-Calculus

A lambda calculus is a formal system for expressing computations. They were KW: Lambda
Calculifirst introduced by Church (1936) to investigate the foundations of mathematics

in form of the questions first posed by Hilbert. Today, there are many lambda
calculi of which Closure Calculus and the pure λ-Calculus are instances.

The comparison of Closure Calculus and the pure λ-Calculus is the main
objective of this report. The linchpin of the comparisons is that of reduction
and normal forms. A term in either lambda calculus may be reduced to a
simpler term. A normal form of a lambda calculus is one where the terms may
not reduce any further. These explanations are brief here - Chapter 2 explores
the notions of reductions and normal forms in a more formal manner, as well as
gives a place to lambda calculi in a map of computational systems. Chapter 5

5

Pure λ-Calculus

System F

System Fω

Haskell

F# Standard ML

OCaml

Pattern Calculus

bondi

Figure 1.1.1: Family tree of some functional programming languages

explains why it it is only fair to compare the calculi by reductions of terms to
their normal forms.

Various lambda calculi are used as the theoretical basis for many functional
programming languages. Figure 1.1.1 shows a family tree of functional pro-
gramming languages (squares) based on their dependence on a theoretical basis
(ellipses). While this report mainly deals with untyped lambda calculi, here we
briefly acknowledge the importance of typed lambda calculi. Many functional
programming languages use a typed lambda calculus as their theoretical basis.

Typed lambda calculi are extensions of the pure λ-calculus. Indeed, there
can be many kinds of typed lambda calculi, each depending on a more primitive
variant. Figure 1.1.2 shows Barendregt’s framework for discussing typed lambda
calculi. The arrows indicate a dependence on objects of a previous typed lambda
calculus. For example, the λ2 (also known as System F) depends on the simply-
typed λ-calculus, λ→.

Closure Calculus began life as an exercise to re-state the pure λ-calculus KW: Closure
Calculuswithout requiring meta-theory. The result is a lambda calculus that has all the

desirable qualities of the pure λ-calculus without the requisite meta-theory. It
is a good theory of functions, Turing-complete, and is amenable to equational
reasoning. Its properties of progress and preservation are proven. Closure Cal-
culus draws from earlier works on explicit substitution (Abadi et al. 1990) as
well as work on closure conversion (Reynolds 1972; Steele 1978; Appel 2007). A
more complete account of Closure Calculus is given in Chapter 4.

In this report, we introduce two flavours of Closure Calculus - Closure Cal-
culus with Names (CCN) and Closure Calculus without names (CCDB), which
is inspired by de Bruijn indices. This report shows that both variants Closure
Calculus is better than the pure λ-calculus.

The pure λ-Calculus is the lambda calculus as introduced by Church in 1936. KW: Pure λ
As introduced, there are three main rules, dubbed α, β and η. Now there are
many lenses through which one may consider these rules. For example, from a
term rewriting point of view, the α rule is considered to be a rewrite rule. The

6

λω λΠω

λ2 λΠ2

λω λΠω

λ→ λΠ

Figure 1.1.2: The λ-Cube

same rule is not considered to be a reduction rule when viewed from the lens of
programming languages. In this report, only the β-reduction rule is considered
as a reduction rule, although a formal treatment of all the rules will be given in
Chapter 3.

In the pure λ-calculus, reduction is done by means of substitution. Des- KW:
Meta-theorypite being vital to the notion of reduction, almost no formal treatment is given

to substitutions in the original introduction of the pure λ-calculus. Subsequent
works have attempted to formalise the notion of substitution. Thus explicit sub-
stitutions (Abadi et al. 1990; Archambault-Bouffard and Monnier ????; Munoz
1996) were introduced. Along the way there has been difficulties - for example
Mellies (1995) observed that a typed lambda calculus with explicit substitution
may not terminate.

Another vital meta-theory is that of α-equivalence (Thompson 1991, pp.
34). α-equivalence makes the pure λ-calculus complicated but is usually glossed
over. Two expressions are considered α-equivalent if they are equivalent after all
the bound variables have been renamed to match each other. It’s been shown
that the optimal algorithm to determine α-equivalence is quadratic(Morazán
and Schultz 2008). The requirement for having a meta-theory on substitution
and α-equivalence is also why λ-calculus is only considered a confluent term
rewriting system up to α-equivalence. Attempts to overcome the meta-theory
requirement, such as with de Bruijn indices, or high order abstract syntaxes
only serves to introduce new meta-theory or complicate any implementation.

7

1.2 “Better” Means Simpler and Faster
The major claim of this report is that Closure Calculus is better than the pure
λ-calculus. The word “better” is defined in two ways - Closure Calculus is
simpler than the pure λ-calculus; and programs written in Closure Calculus
reduce to normal forms faster than a similar program written in the pure λ-
calculus. This is often shortened to the utterance “Closure Calculus is simpler
and faster than the pure λ-calculus”, or simply “Closure calculus is better than
the pure λ-calculus” in this work.

Closure Calculus is simpler than the pure λ-calculus in two sense of the KW: Simpler
word. First, it is simpler to implement than the pure λ-calculus. Second, it is
simpler in that the reduction rules are straightforwards. The first sense of the
word “simple” implies that a comparison is done on the implementations. The
second sense of the word implies a comparison is done on the theories.

When comparing implementations, simplicity is measured in a variety of
metrics, from lines of codes to number of logical branches required. A Closure
Calculus interpreter is simpler than a pure λ-calculus interpreter across these
metrics.

When comparing the theory of Closure Calculus and the theory of the pure
λ-calculus, it gets a little trickier. On the surface, it appears that the reduction
rules of Closure Calculus is not axiomatic. Upon first read of the reduction
rules of Closure Calculus, it will not be obvious to the reader on how reductions
would work. However, this is not because Closure Calculus is more complicated.
Rather, it is that the pure λ-calculus requires some hidden assumptions. This
is commonly known as meta-theory. The lack of meta-theory is why Closure
Calculus is considered to be simpler.

To put it plainly, the reduction rules of Closure Calculus are straightforwards
- what you see is what you get; while the reduction rules of the pure λ-calculus
requires more contextual information. This has implications when implementing
the calculi in question. These implications may be extended to the case of
programming languages, many of which are at least partial implementations of
the calculi.

Further expositions on the relative simplicity of Closure Calculus to that of
the pure λ-calculus can be found in Chapter 6.

The reduction rules of Closure Calculus being simpler reveals its implication KW: Faster
in the performance of the respective implementations of the lambda calculi.
Programs written in Closure Calculus reduce to normal forms faster than a
similar program written in the pure λ-calculus. This is measured in three ways
- count of operations; absolute time taken; and memory required to reduce the
terms to normal form. In all three metrics, Closure Calculus outperforms the
pure λ-calculus across a number of tasks. This result is attributable to the fact
that there is little-to-no meta-theory requirement in Closure Calculus. Further
analysis is given in Chapter 7.

The count of operations includes counting the application of reduction rules
and meta-operations. Readers may protest that it is not fair to include meta-
operations in the count of operation. However, this comparison is fair when

8

viewed with the lens of implementing programming languages. Both reduction
operations and meta-operations use computational resources. The rationale for
comparing reductions to normal forms (as opposed to comparing reduction to
head normal forms) is given in Chapter 5. However, the brief explanation is that
the comparison of reductions to normal forms is the only fair way to compare
the performance of the calculi.

1.3 Novel Contributions
The main novel contribution of this work is to show that

1. The implementations of Closure Calculus are simpler than equivalent im-
plementations of the pure λ-calculus;

2. Programs written in Closure Calculus reduces to normal forms faster than
the equivalent programs in the pure λ-calculus.

This is done in service of the view that Closure Calculus is more suitable as a
foundation for functional programming languages than pure λ-calculus.

Table 1.2 shows a summary of the extent that this work is novel.

Approach Simple

Simpler

(Fewer Lines of

Code)

Simpler

(Fewer

Meta-Operations vs

Baselines)

Faster than

Baselines

Normal Order

λ-calculus (Naïve)

- Baseline 1

! % % %

Call-by-Value

λ-calculus (Naïve)

- Baseline 2

! % % %

Call-by-Name

λ-calculus (Naïve)

- Baseline 3

! % % %

This Work (CCN) ! ! ! !

This Work (CCDB) ! ! ! !

Table 1.2: Summary of Contributions

1.4 Significance of the Objectives to the Aims

Stakeholders
The primary audience for this report are functional programming language im-
plementors whose aims are given in the following subsection. Now this report

9

is about the comparisons of Closure Calculus to the pure λ-calculus. The met-
rics of comparison are based on reductions to normal forms. This may not
interest some implementors of functional programming languages, as reduction
to normal form is not the priority.

Nonetheless, there is value in understanding implementations of calculi. The
implications of this report transfer well to implementations of programming
languages. This work shows what it means to have an implementation of a
calculus with few or no side conditions. If such an implementation is simpler
than an implementation of the meta-theory heavy pure λ-calculus, it follows that
an implementation of a programming language based on Closure Calculus would
also be simpler. If the programs run faster on an implementation of Closure
Calculus than on a similarly implemented pure λ-calculus, then by extension,
programs would presumably also run faster on a programming language built
on top of Closure Calculus.

This report shows that there may be utility in using Closure Calculus as Reader note: By
this point,
readers should be
able to tell that
people like Simon
Peyton Jones,
and Xavier Leroy
are the target
audience of this
report. Y/N ?

a theoretical basis for a functional programming language. This may be an
interesting topic for future explorations.

Aims
This report is written for functional programming language implementors who
have concerns over the following issues:

1. Having a simpler-to-implement compilation and runtime components

2. Having faster programs at runtime.

All things being equal, a programming language that is simpler to implement
is preferred over a programming language that is complex to implement. The
notion of “implementation of programming language” is intentionally left vague
as the primary comparisons done in this report concerns the actual lambda
calculi themselves. It suffices to say that an implementation of a programming
language involves both compile time and runtime components of a programming
language.

Furthermore, highly performant programs are always in demand - imple-
mentors of programming languages are always adding various optimisations
passes in compilers so that the resulting programs run faster.

Given that functional programming languages are built on a theoretical
foundations of a lambda calculus, it is fair to say that the aim of functional
programming language implementors is to find a better lambda calculus to form
the theoretical basis of functional programming languages.

Objectives
The objective of this report is to show that Closure Calculus is better than
the pure λ-calculus. Closure Calculus is better in two ways - it is simpler
and faster. Simplicity is compared in two ways: comparison of the theory

10

and comparison of the implementations. The latter is done by implementing
interpreters for Closure Calculus and the Pure λ-Calculus, and comparing the
simplicity of each interpreter. An additional hypothesis naturally occurs: is
Closure Calculus faster than the pure λ-calculus? To answer that, equivalent
programs are written in both Closure Calculus and the pure λ-calculus and the
reductions to their normal forms are compared.

There are also side benefits to comparing the interpreters. First, an im-
plementation of a Closure Calculus interpreter shows that Closure Calculus is
practical, and not just another Turing Tarpit, where “...everything is possible
but nothing of interest is easy” (Perlis 1982).

Furthermore an implementation of Closure Calculus serves as a tool to ex-
plore some implications of the theory. In the implementing an interpreter for
Closure Calculus, potential issues around the calculus may be discovered.

These inform the viability of using Closure Calculus as the theoretical basis
for a programming language, a topic ripe for exploration in the near future.
There are several implications of using Closure Calculus as a theoretical basis
for a programming language. Two of which serve the aims of the stakeholders.
The remaining implications are explored in in Chapter 8.

Thus, the implementation of a Closure Calculus interpreter, and the sub-
sequent comparisons against interpreters for the pure λ-calculus serves the ob-
jective to show that Closure Calculus is better than the pure λ-calculus.

Significance
If it can be shown that Closure Calculus is simpler to implement than the pure λ-
calculus, what logically follows is that programming languages that use Closure
Calculus as a theoretical basis will also be simpler to implement when compared
to a pure λ-calculus counterpart. Thus the first objective is significant to the
first aim of the stakeholders.

The second objective is a consequent to the fact that Closure Calculus is
simpler than the pure λ-calculus in theory, hence implementations would be
faster due to less work being done. What follows from this is that program-
ming languages that use Closure Calculus as a theoretical basis would yield
faster programs at run time too. This is significant to the second aim of the
stakeholders.

Overall, this has an impact in the design and implementation of future func-
tional programming languages. In particular, it shows that Closure Calculus
can be used as a basis to replace λ-calculus in compilation pipelines.

The significance of the objectives to the aims of the stakeholder is summar-
ised in the Table 1.3 - the main aims, objectives and significance are bolded while
the unbolded entries are componentwise breakdowns of the aims, objectives and
significance:

11

Aims Objectives Significance if outcome of
objectives is a success

Find a better lambda

calculus for the

theoretical basis of

functional programming

languages.

Show Closure Calculus is

a better lambda calculus

than the pure λ-calculus

Closure Calculus is a

good candidate for the

theoretical basis of

functional programming

languages.

Simpler compilation and

runtime components

Implement an interpreter for

Closure Calculus and

compare against interpreters

of λ-calculus to show that

Closure Calculus is simpler

Implementations of

programming languages

would be simpler, leaving less

surface area for errors to

manifest.

Faster programs at run time Implementing an interpreter
for Closure Calculus allows
exploration of implications:

Faster program execution

Functional programming

languages that generates

binaries that are more

performant

Table 1.3: Significance of the objectives to the aims

1.5 Methods
In order to achieve the stated objectives, the following is done.

First, two interpreters for Closure Calculus are implemented. This corres-
ponds to the two variants of Closure Calculus - CCN and CCDB. These in-
terpreters are naively implemented without consideration for implementation
efficiency.

Second, multiple interpreters for λ-calculus are implemented. They corres-
pond to each of the following operational semantics: call-by-value, call-by-name
and normal order.

Third, a test suite of equivalent programs for both variants of Closure Calcu-
lus, and λ-calculus was created. This allows for meaningful comparison between
evaluation of program-input pairs for Closure Calculus and λ-calculus.

Fourth, the test suite of programs is run for each interpreter. Comparisons
on the work done by each interpreter.

Last, benchmarks are performed across select programs. This allows for
comparison of performance of Closure Calculus versus the performance of λ-
calculus in evaluating their respective programs.

Work is measured as the number of term reductions and the number of meta-
operations required to evaluate a program-input pair. In particular, the meta-
operation of substitution is considered for λ-calculus, while the meta-operation
of variable equality is considered for all implementations of Closure Calculus
and λ-calculus.

Additional meta-operations like set union and fresh variable generation are
also counted, but not considered work done for the purposes of comparison.
This is due to the recursive nature of these meta-operations. For example,

12

capture-avoiding fresh variable generation subsumes variable equality checks.

1.6 Tests For Success
The tests for success would be that the implementation for both Closure Cal-
culus interpreters are indeed simpler in the following ways:

1. The interpreters for Closure Calculus are simpler than the interpreters for
λ-calculus by some commonly used complexity metrics: Lines of Code,
COCOMO and Cyclomatic Complexity.

2. When interpreting programs-input pairs of the respective calculi, the Clos-
ure Calculus implementations do less work. This is compared by means
of counting reduction steps and meta operations.

3. Consequent to having to do less work, the Closure Calculus implement-
ations should be more performant than the λ-calculus implementations.
This will be compared by various benchmarks on equivalent program-input
pairs.

1.7 Structure of This Report
This report is structured in a way that benefits readers of different experience
levels. The report is split into three parts: Preliminaries, Comparisons and
Implications. An appendix follows.

Preliminaries contains the chapters that are considered necessary prelimin-
aries to the implementation and results. The last three chapters of the Prelim-
inaries share the same internal structure. The chapters discuss Term Reduc-
tion Systems, the pure λ-Calculus and Closure Calculus respectively. Readers
already familiar with each of these may opt to skip them. However, it should be
noted that these three chapters are structured thus so readers may infer from
structure of the chapters alone, that Closure Calculus is itself simpler than the
pure λ-calculus.

The Comparisons section starts with a chapter explaining how fair compar-
isons are to be made. This is followed by a chapter which shows that Closure
Calculus is simpler and a chapter which shows that Closure Calculus is faster.

The last part of this report explores the implications of Closure Calculus.
The Discussions chapter frames the use of Closure Calculus in the context of
implementing industrial functional programming languages and explores the im-
plications of using Closure Calculus as a theoretical basis of functional program-
ming languages. The chapter titled Interesting Artefacts of Closure Calculus
reports on the other implications that Closure Calculus may have. The final
chapter reinforces the main thesis of this report: that Closure Calculus is better
than the pure λ-calculus.

Figure 1.7.1 shows the dependency order of the chapters in this report. It is
the recommended way to read this report.

13

Chapter 1

Chapter 3Chapter 2 Chapter 4

Chapter 5 Chapter 6 Chapter 7

Chapter 9 Chapter 8Chapter 10

Preliminaries

Comparisons

Implications

Figure 1.7.1: Dependency Order of Chapters

1.8 Notation Conventions
The term “lambda calculus” is used when referring to a generic member of the
family of calculi, of which Closure Calculus and the pure λ-calculus are members.
By contrast, “λ-calculus” or “pure λ-calculus” refers to the lambda calculus first
introduced by Church.

Languages
This work involves descriptions of calculi, expressed as formal languages. A more
careful treatment of languages will be given in Chapter chapter 5. However, here
we will give a brief introduction to formal languages.

Let there be a set letters called an alphabet, Σ. A word is a combination of
letters from the alphabet. We say that words are formed over the alphabet. The
set of all words is written as Σ∗. Combinations of words are called sentences,
terms, or expressions depending on context. A sentence may be well-formed
or gibberish. The rules that govern whether a sentence is well formed is called
a grammar. Just as English has its own grammar, so too do the languages of
Closure Calculus and the pure λ-calculus. A language L over an alphabet Σ is
a subset of Σ∗ with a grammar.

Unless called for by the discussion, we omit defining a language by its al-
phabets and letters. Instead, we define languages by their grammar, presented
in BNF.

14

When discussing the calculi expressed as a language, it is inevitable we will
require a language of languages - a meta-language - to describe the calculi. It is
vital to separate the meta-language from the object language. A meta-language
is a language used to describe the object language. The object language in
question may be of Closure Calculus or the pure λ-calculus. Reminders will be
placed at appropriate points to remind reader of the nature of the language in
question.

Variables and Placeholders
Further, this report concerns the notion of variables. A more complete treatment
of variables is provided in the appendix. However, it is important to clarify
the difference between a placeholder and a variable. A placeholder is a meta-
syntactic notion to help readability of this report. Placeholders will be defined
using the symbol := and the names of placeholders will be in boldface. An
example follows:

Example. Given the following:

id := λx.x (1)
(λy.id y) z →∗ z (2)

Expression (2) should be read as λy.(λx.x) y) z →∗ z, where the underlined
subexpression was defined as id.

Placeholders may also be defined in midst of longer reduction sequences. In
such situations, the symbol ≡ will be used. The ≡ symbol will also be used when
denoting that two expressions are equivalent.

Example. Given a reduction sequence

...

→∗ (λx.x) (λx.x) (1)
≡ id id (2)
≡ (λx.x) id (3)
...

Expression (2) means that the previous line is to be abbreviated into place-
holders. Expression (3) “desugars” one of the id back into its long form while
keeping the other as a placeholder. It says that expression (3) is equivalent to
expression(2).

Other Notes on Notation
Any words in Noun face will have a corresponding entry in the nomenclature
section.

M and N are usually used throughout this report as valid arbitrary terms.

15

Chapter 2

On Abstract Reduction
Systems, Term Rewriting
Systems and Various
Preliminaries

This chapter provides only an overview of rewriting systems. It is enough only
to give specificity to the Pure λ-calculus and Closure Calculus. For a more
thorough treatment of term rewriting systems and abstract rewriting systems,
see TeReSe (Bezem et al. 2003).

The pure λ-calculus and Closure Calculus are term rewriting systems. Often
the notion of a term rewriting system is confused with that of an abstract
reduction system. To clarify, a reduction system is a more general notion of a
term rewriting system (Klop 1990; Baader and Nipkow 1999).

A term rewriting system can be thought as a subset of abstract reduction
systems which also include systems like string rewriting systems and Post-Thue
systems. Figure 2.0.1 depicts the relationship between reduction systems, term
rewriting systems, and calculi in the λ-calculus family.

16

Abstract Reduction Systems

Term Rewriting Systems

λ-Calculus
•

•

Pure λ-Calculus

Closure Calculus

Figure 2.0.1: Reduction systems and term rewriting systems

Following in the footsteps of Bezem et al. (2006), a basic, informal example
goes a long way in illustrating the notion of “rewriting” and “reduction”. This
example will be used as the running example throughout this chapter.

Example. Let expr = (1 + 2) + (3 + 4), we shall now consider the evaluation
of this expression.

We may say that the expression 1 + 2 + 3 + 4 evaluates to 10. Being such
a simple arithmetic expression, we may often forget it’s done in multiple steps,
each step reducing the length of the expression, as follows:

expr = 1 + 2 + 3 + 4

= 3 + 3 + 4

= 6 + 4

= 10

Each “step” is headed with the = symbol. The resulting expression lies to
the right of the = symbol. Red and underlined terms will be explained shortly.

Several observations can be made.
First, consider each “step”. The results of each “step” gets progressively

shorter. This is the notion of “reduction” - i.e. for 1 + 2 → 3, we can say that
1+2 reduces to 3. The → is called a reduction relation. The = symbol is used to
represent an equivalence relation - i.e. when both expressions on either side of
the → denote the same number, and when the relation is symmetric, transitive
and reflexive. Do note that the equivalence relation is dependent on the term

17

rewriting system. The pure λ-calculus has its own notion of an equivalence
relation, as does Closure Calculus.

Next, note that the end result, 10, is an expression that may not be reduced
any further. When an expression may not be reduced any further, we say that
the expression is in normal form.

Then, observe that within each expression, there are sub-expressions. The
underlined sub-expressions are chosen to be reduced next. The result of the
reduction is bolded in the following line. In this specific instance, the choice
of which sub-expression to reduce first does not matter, in that reduction to
normal form will yield the same normal form as the steps above. This property
is called the uniqueness of normal forms.

expr = 1 + 2 + 3 + 4

= 1 + 2 + 7

= 3 + 7

= 10

Last, consider the underlined sub-expressions and the red results on the
following lines. We may analyse the underlined sub-expression as a context
in which a reduction occurs. Once the expression in the context is reduced, the
result is place in the stead of the original expression. We may think of them
visually as boxes.

1 + 2 + 3 + 4 (step 0)

1 + 2 → 3 + 3 + 4 (step 1)

3 + 3 + 4 (step 1a)

3 + 3 + 4 (step 2)

...

Observe in the preceding example that the red box stays in place, but the
values in them change. It is in this sense that we call this “rewriting”.

A note must be made. In step 2, the red box is removed because 1 + 2 → 3,
and 3 is in normal form, it’s no longer reducible, hence no longer a context. A
more careful treatment of contexts, and what can or cannot be a context will be
provided in the sections below. The specific definitions of contexts in λ-calculus
and Closure Calculus will be provided in their respective chapters.

With this general overview done, we may now proceed to more carefully
define an abstract reduction system, followed by defining term rewriting systems.
This example will be used as a running example to clarify certain ideas.

18

Abstract Reduction Systems
An abstract reduction system 〈A, {→α}〉 consists of a structure that contains a
set of objects A; and a set of binary relations {→α} on A (Klop 1990). The
binary relations are called reduction relations.

There may be many kinds of reduction relations in a reduction system. This
is denoted by the subscripted α in the arrow. If there is only one kind of
reduction relation, then we may omit the subscript.

We give the following definitions to further discussion on Closure Calculus:

• If for a, b ∈ A and a→α b ∈ {→α} , then we call b the one-step α-reduct of
a. In other words, we may say it as “a reduces to b in one step”.

• If for a, b, c ∈ A, a →α b ∈ {→α} and b →α c ∈ {→α} then a →α b →α c is a
valid reduction for which a transitive, reflexive closure of →α over {a, b, c}
exists. The transitive, reflexive closure of →α is written →∗

α . When we
write a →∗

α c, this implies there exists a finite but possibly zero length
sequence of reductions between a and c. We may say this as “a reduces to
c”.

• If for a ∈ A, there are no b ∈ A such that a →α b, then we say a is in
normal form. Following this, if for a, b ∈ A and a →∗

α b, if there is no
c ∈ A such that b→α c, then we say that b is the normal form for a.

Term Rewriting System
A term rewriting system (TRS) is a more specific form of an abstract reduction
system. Where in an abstract rewriting system there’s a set of objects A, in a
term rewriting system the objects are first order terms. The reduction relations
are then the rewrite rules.

λ-calculus and Closure Calculus are a higher-order term rewriting systems
because the calculi have notions of bound variables. Nonetheless, it’s useful to
have an understanding first order term rewriting systems.

The Syntax of Term Rewriting Systems

A term rewriting system is made up of a pair (Σ,R), of signature Σ and rules
R. The signature Σ is defined as being made up of:

1. Variables drawn from an countably infinite set, V ar. They are written
x, y, z... or x0, x1, x2... when indices are needed.

2. A set of operator symbols. Each symbol has an arity - a natural number
which denotes how many “arguments” the operator is supposed to have.
For example, in the pure λ-calculus, the operator λ has an arity of 2: the
name of the bound variable and the body. The identity operator I in
Closure Calculus has an arity of 0 - it does not require any arguments for
it to be complete.

19

2.1 Terms
The set of terms or expressions, Terms(Σ) can therefore be defined inductively
over the alphabet Σ as such:

1. ∀x, y, z... ∈ V ar, x, y, z... ∈ Terms(Σ).

2. if O is an operator with an arity of n ; and x0, x1...xn ∈ Term(Σ) then
Ox0 x1 ... xn ∈ Term(Σ).

Defined thus, a term is the object that being operated upon by the rules of the
rewriting system. A term may nest - terms may contain other terms. A term
with no variables in it is called a closed term.

When discussing terms in the context of term rewriting systems, the word
“terms” will be used. The alternate name “expressions” will be used when dis-
cussing terms in the context of implementations and in showing actual reduction
steps. Most terms are defined in BNF form in this report.

Example. We may define the terms of our running example in BNF form as
follows:

t ::= x ∈ V ar
| n ∈ N
| + t t

The BNF is read thus - t is a meta-variable which stands for a term. Then we
define x to be a meta-variable denoting a variable symbol. In future discussions,
“∈ V ar” is assumed automatically. n is any natural number. Last, the operator
+ is an operator with an arity of 2. We usually write it infix, such that (+ t t)
is written t+ t.

Contexts
A rough notion of rewriting contexts was introduced in the introduction to this
chapter. This section refines the notion of a context. A context is a syntactic
device to aid in description of terms and operations on terms.

First consider the alphabet Σ. Extend it with a new symbol �, making it
Σ ∪ {�}.

A term over the extended alphabet Σ ∪ {�}, if it contains one or more oc-
currences of �, is called a context.

What does � denote? It denotes a hole - an incomplete term, so to speak.
Holes may be filled in with other terms.

A one-hole context is written C[]. If a term t ∈ Terms(Σ) can be written
such that t ≡ C[s], where s ∈ Terms(Σ), then the term s is called a subterm.
C[] is then the prefix of the term t.

20

Example. Let Σ = {λx., λy., λz.,App}∪V ar, where the operators λx., λy. and
λz. have arities of 1 each1. The App operator has an arity of 2. Instead of
writing it App(Term1, T erm2), we will write it infix, like so (Term1 Term2).
Now we have the following:

• There are no closed terms possible (at least in a first order term rewriting
system - we now begin to see why a higher order system is required to
describe λ-calculus).

• λx.x is a term with a single occurrence of the variable x. This is sometimes
called a linear term.

• λx.(x x) is a term with two occurrences of the variable x. Then λx.�
and λx.(� �) are prefixes for λx.(x x). More specifically, (� �) is a
sub-context of the context in λx.�. Hence (x x) is a subterm of λx.(x x).

• λx.λy.x is a term. Then λx.� and λx.λy.� are prefixes of λx.λy.x. We
say λy.x is a subterm for λx.λy.x.

NB: λ-Calculus is a Higher-Order Rewriting System
It should be noted that λ-calculus is a higher-order term rewriting system. This
is due to notion of bound and free variables in λ-Calculus. A finer treatment on
bound and free variables will be given in the following chapter on λ-Calculus.
However, for now, consider the following expression:

λx. x y

The latter x is bound to the binding variable of λ. y is a free variable.
The existence of variable binding requires that the TRS be considered on a

higher order - there must be a meta-term and the terms of the calculus itself.
Three extensions to the alphabet Σ are required in order to define meta-terms
(meta-variable t):

1. Variables as defined in the first-order TRS (meta-variable x).

2. Operators, as defined in the first-order term rewriting system. However
in particular, the abstraction operator λ, in conjunction with a binding
variable symbol x must be defined. It is usually written as λx.t.

3. Applications of meta-variables f(t0, t1...tn).
1We sidestep the fact that λ-calculus requires a higher order system to be described by

fixing both the number of operators, and the operators themselves. The reason for using λ
notation is because it would serve as a more illustrative example for readers who might already
be familiar with λ-calculus

21

The meta-terms are only used to describe the terms of the calculi and their rules.
Further, the rewrite rules are closed meta-terms - there are no meta-variables
in rewrite rules.

If there appears to be confusion, it is normal. Describing λ-calculi in general Reader note:
Should there be
an example here
to explain what I
mean?

require a “meta”-level. However, as will be presented later, there are meta-
operations that exist in the pure λ-calculus that doesn’t exist in Closure Calcu-
lus. It is in this sense that the theory of Closure Calculus is simpler than the
theory of pure λ-calculus.

2.2 Substitution
The lengthy build up of contexts and the notion of holes to be filled serves one
purpose: to facilitate the discussion of the notion of substitutions.

A substitution σ is a function that replaces variables with terms. It can be
conceptually thought as a mapping of variables to terms, σ : V ar → Term .
Application of substitution to terms are subject to satisfying

σ(O t1...tn) ≡ O σ(t1)...σ(tn)

for every n-ary operator O. If O has an arity of 0, then σ(O) ≡ O.
The domain of a substitution σ is written as Dom(σ). It is a restriction on

the replacement of variables. Only variables found in the domain of σ will be
replaced. For example, if the variables x and y exist in the term t1, but only
x ∈Dom(σ), then σt1 will only replace x in t1, and not y.

A substitution is written {u0/x0, u1/x1...un/xn}, where each u/x is to be
read “substitute u for x”.

Substitutions may be applied on terms. It is written as such: {u/x}t. What
this means is to substitute all instances of the variable x in term t with term u.

A note on notation: the use of curly braces indicates that substitution is a
meta-operation. In the chapter on Closure Calculus, an alternate notation will
be used to represent the idea of substitution, as substitution in Closure Calculus
is a first class object.

2.3 Rewrite Rules
Having defined what a term is, and what a substitution is, all that remains in
defining a term rewriting system is the notion of a rewrite rule. A rewrite
rule for a signature Σ is a binary relation → on the terms of Terms(Σ). It is
written as ρ : l→r, where ρ is the name of the rule.

Two conditions are imposed as follows:

1. The left hand side of the binary relation, l is not a variable.

2. Every variable in the right hand side, r must occur in l.

22

A reduction rule l → r may be thought of as a scheme, particularly when it
comes to the pure λ-calculus. An instance of a rule ρ is obtained by applying a
substitution σ, called an atomic reduction step, written lσ →ρ r

σ.
Upon application of the substitution σ, the left hand side lσ is a term (ex-

pression) immediately reducible. For that, we call such such terms/expressions
a reducible expression, or redex, for short.

A rewrite step therefore is the idea of rewriting a redex within a context:

C[lσ] →ρ C[rσ]

The →ρ is called the one-step reduction relation generated by ρ. In the later
chapters on the pure λ-calculus and Closure Calculus, reduction rules listed are
one-step reduction relations, and are written with the harpoon symbol, ⇀.

2.4 Normal Forms
When an expression no longer contain any redex as its subterms, it’s called a
normal form (NF). There are variants of the normal form - Weak Normal
Form, Head Normal Form and Weak Head Normal Form. These pertain spe-
cifically to the pure λ-calculus and will be discussed in the chapter on the pure
λ-calculus. There is only one kind of normal form in Closure Calculus.

A complicated expression may have multiple redexes ready to be reduced.
There is hence a need to choose which redex to reduce first. This is called
a reduction strategy. A reduction strategy corresponds to small-step se-
mantics (Wright et al. 1994). However, reduction strategies only make sense if
the reduction rule is confluent. Confluence is explored in the next section.

A TRS is strongly normalising if every sequence of rewrites yields a NF.
A TRS is weakly normalising if there exists a sequence of rewrites of a term
that yields a NF. Neither Closure Calculus nor the pure λ-calculus are strongly
normalising. However, in Closure Calculus, all programs and values can be
written in normal form. This appealing property will be explored further in the
chapter on Closure Calculus.

2.5 Confluence and Termination
When reducing a term, occasionally a choice has to be made on which subterms
to reduce first. A reduction system is confluent if the same result is yielded, no
matter the choice.

Using our running example, we see that (1 + 2) + (3 + 4) may be reduced in
two ways. Both reductions ultimately reduce to (3 + 7), which may be further
reduced to 10.

23

(1 + 2) + (3 + 4)

3 + (3 + 4) (1 + 2) + 7

3 + 7

(1+2)+(3+4) (1+2)+(3+4)

We say that the reduction is confluent, because regardless of which path we
take, we get the same result within one step. This is important - it would be
rather unhelpful for a calculus to have reduction rules that diverge on choice of
redex!

The confluence property implies that there is only one NF for each expres-
sion. This property is called uniqueness of normal forms. This is a useful
property

The reduction of terms in the running example terminates. This is to say if
we continuously apply reduction rules, eventually the terms come to a normal
form.

In the chapters on the pure λ-calculus and Closure Calculus, we will explore
terms that will never terminate under their specific reduction rules.

A final note on confluence and termination - a reduction rule may lead to
non-termination, but can still be confluent. This requires the notion of local
confluence, which will be introduced in the chapter on the pure λ-calculus.

2.6 Evaluation and Operational Semantics
Terms in a term rewriting system may be evaluated. An evaluation of a term
results in a “final result” of the reduction. These “final results” are called values.
Note that the notion of “final” result may be arbitrary. The operational
semantics of a term rewriting system defines how evaluation is to proceed.

Usually, values are a subset of the syntax. This does not have to be the case.
Using the running example in this chapter, we may define the terms and values,
followed by its operational semantics as follows:

t, u := t+ u | n ∈ N (terms)
v := n ∈ N (values)

n,m ∈ N
n+m→ �n+m�

t→ v

t+ u→ v+ u

u→ v

t+ u→ t+ v

The syntax of the TRS is presented in BNF form. This differs from an earlier
example where the terms are defined inductively. Here it is defined recursively.

Terms take two forms: the first is t+ u, where t and u are meta-variables
that may be replaced with another term; the second is a number n, drawn from
the natural numbers. Here, n is also a meta-variable.

24

The values of this TRS is defined to be only a natural number.
The operational semantics of this TRS is written as a derivation tree. The

statement over a line is a premise while the statement under a line is the con-
clusion.

Informally, the first rule says that if m and n are both numbers, then the
expression n+m will be evaluated as the result of adding the two numbers up.

The second rule states that if a term t evaluates to a value v, then the
expression t+u is to be evaluated as v+u. u is a meta-variable standing in for
another term.

The last rule is like the second rule, except applied to the second operand
of the + operator.

Together, these three rules define a term reduction system that was used as
a running example in this chapter. Hence we may reduce 1 + 2 + 3.

2.7 Some Remarks on ARSs and TRSs
Abstract reduction systems and term reduction systems are a large field of study.
TeReSe (Bezem et al. 2003) remains one of the better guides to both.

However, an interesting observation may be made - tree walking interpreters
(introduced in a later chapter) are good ways to implement the operational
semantics of TRSs.

25

Chapter 3

The Pure λ-Calculus

Church’s discovery of λ-calculus was an unintentional side effect of his pursuit
of the answer to the consistency of mathematics itself. Church had believed
“...the entities of formal logic are abstractions, invented because of their use
in describing and systematising facts of experience or observation, and their
properties, determined in rough outline by this intended use, depend for their
exact character on the arbitrary choice of the inventor”(Church 1932, pp. 348),
and hence set out to formalise the very notion of functions.

The first version of the λ-calculus was very quickly determined to be in-
consistent (Kleene and Rosser 1935) - it contained a contradiction. That con-
tradiction spurned Church to refine his calculus, giving birth to the pure λ-
calculus that is familiar to this day (Church 1936). The epistemological nature
of Church’s λ-calculus has since been overshadowed by the main thesis of his pa-
per, that “...an effectively calculable function of positive integers [can be defined]
by identifying it with the notion of a recursive function of positive integers (or
of a lambda-definable function of positive integers)” (Church 1936, pp. 356).

The pure λ-calculus is extremely simple. There are only three terms: vari-
ables, applications and λ-abstractions. Despite that, it is capable of represent-
ing any computable functions and thus, is Turing-complete (Barendregt 1985).
This resulted in λ-calculus being used as a theoretical foundation and inspira-
tion for many functional programming languages. ML, Ocaml and Haskell have
a lambda calculus as the theoretical foundation while LISP was inspired by the
pure λ-calculus.

This chapter proceeds as follows: first the terms of the pure λ-calculus is
given. Then the notion of substitution is defined. This is followed by definitions
of the rewrite rules and the various normal forms that terms of the pure λ-
calculus may take. A brief tour on the confluence and termination properties of
λ-calculus follows. Next, evaluations and various operational semantics of the
pure λ-calculus are considered. The chapter then closes with some remarks on
the pure λ-calculus.

26

3.1 Terms
The terms of the pure λ-calculus is given as follows in BNF form.

t, u := (term)
x (variable symbol)
| (t u) (application)
| λx.t (abstraction)

Figure 3.1.1: Terms of λ-calculus

A term in the pure λ-calculus are either variables, applications of two terms,
or a λ-abstraction. A note on notation - M,N are used throughout this chapter
as arbitrary λ-terms.

A variable is a symbol drawn from an infinite set of symbols, usually the
English alphabet.

An application of two terms (t u) is the application of the term t to the term
u. Application is left associative. If t, u, v are terms, then t u v is equivalent
to (t u) v. Applications also have higher precedence (i.e. it binds tighter) than
other terms, so λx.t u means λx.(t u) and not (λx.t) u.

A λ-abstraction λx.M may be broken down into useful parts that will be
given names, illustrated below.

λ
function

x
binder

. M
body

We call λx.M the abstraction of t. We call λx a binder. We say that the
variable x is bound to the body M . The body M is itself a λ-term. Any
occurrence of x in M is called a binding.

The part called a function in the illustration is not a common name. How-
ever, it aids in the intuition of λ-calculus when it comes to implementing an
interpreter. Specifically it calls to the intuition that λ as a standalone operator
is a generator of functions, rather than the incorrect notion seen in popular web-
based tutorials where the entire term is considered a function. The difference is
admittedly subtle, but makes a world of difference when it comes to reasoning
around the implications of λ-terms.

A λ-term is amenable to structural induction. By introducing named parts of
the structure of a λ-term, it allows for an easy way to talk about such inductions.

The first subterm of a term is called the head. In an application (x y), x is
the first subterm, therefore it’s the head. In the λ-abstraction (λx.((λy.y) x) x),
the first subterm is ((λy.y) x). The head of a variable x is itself. This notion of a

27

“head”ness of a term has to do with the notion of head-reduction, which are useful
in the study of the theories of syntactic solvability of λ-calculus (Barendregt
1985, Part 1, Chapter 4 and Part 4). This is not explored here, however, the
notion of the head is useful when discussing the various normal forms.

Contexts
A context is a λ term with some holes in it. A concrete definition of what a
context is given below for λ-calculus:

• x is a context.

• � is a context.

• if C1[] and C2[] are contexts then so are (C1[] C2[]) and λx.C1[].

• if C[] is a context and M is an arbitrary λ-term, then C[M] denotes the
result of placing M in the hole. A free variable in M may no longer be
free in C[M].

Example. Let C[] ≡ λx.λy.�. If M ≡ x then C[M] ≡ λx.λy.x.

3.2 Substitution
Given that the pure λ-calculus is a term rewriting system, substitution is an
expected operation on the terms. Having defined the idea of a substitution con-
text, a treatment on variables is needed before being able to discuss substitution
in the pure λ-calculus.

A variable in the pure λ-calculus may be in one or two forms: a free variable
or a bound variable. The notion of a free variable was briefly touched upon in
the previous chapter. This section refines the ideas.

A variable that exists in a λ-abstraction may be free or bound. A bound
variable is a variable that is contained in the context of a given binder. Revisiting
the illustration from the previous chapter:

λx. x y

It’s easy to see that x is bound by the binder that the red arrow is pointing
towards. y on the other hand is bound by nothing, therefore y is a free variable.

Let’s consider now the expression λx.(x (λx.x) x). Parentheses have been
inserted as to make clear the meaning of the expression. Which binders are the
fourth and fifth x bound to?

The following illustration shows the relationship between binders and bind-
ings.

28

λx.x (λx.x) x

We write FV (M) as the set of free variables of an arbitrary λ-term M . It
is defined thus:

FV (x) = {x}

FV (MN) = FV (M) ∪ FV (N)

FV (λx.M) = FV (M)\{x}

where a variable is free in itself; FV (M)∪FV (N) is the union of the sets FV (M)
and FV (N); and FV (M)\{x} is the set theoretic difference of FV (M), obtained
by removing x from FV (M).

A substitution in the pure λ-calculus is a partial function from a variable to
a term. We write a substitution as {M/x} where M is an arbitrary valid term
and x is a variable symbol. Alternately, we may also write a substitution using
the meta-variable σ.

The application of a substitution σ to a term M is given by:

σx = u if x ∈Dom(σ)

σx = x if x 6∈Dom(σ)

σ(t u) = (σt) (σu)

σ(λx.t) = λx.(σt) if σ avoids x

Being a map of variables to terms, a substitution σ may also contain free
variables. We write FV (σ) to mean the FV (Range(σ)), where Range(σ) is the
mapped-to term of each variable in Dom(σ).

We now address the side condition to the final equation. “if σ avoids x”
means x 6∈Dom(σ) ∪ FV (σ).

Example. {M/x}λx.x is not λx.M .
This is because the x (bolded for emphasis) under the λ is bound in λx.x.

Therefore substitution may not occur.

Example. {y/x}λy.x is not λy.y.
This is because the variable y is free in {y/x}, and it would become bound

after substitution happens. Therefore substitution may not occur.

3.3 Rewrite Rules
There are three rewrite rules for λ-calculus, given as follows:

29

{y/x}λx.t ⇀ λy.{y/x}t y 6∈ FV (t) (α)
(λx.t) u ⇀ {u/x}t if x 6∈ FV (t) ∪ {x} (β)
λx.t x ⇀ t x 6∈ FV (t) (η)

Figure 3.3.1: Rewrite rules for λ-calculus

Here, there are three rewrite rules. Of these, only the β rule is a reduction
rule. The remaining rules are rewrite rules to facilitate conversion. Terms that
are α-equivalent or η-equivalent may be converted from one to the other via the
α or η rewrite rules.

Alpha Equivalence
The first rule is the α-rewrite rule. In order to understand the purpose of this
rewrite rule, the notion of α-equivalence has to be introduced first. We say that
two terms are α-equivalent if after applying a suitable instance of the α-rewrite
rule to each term respectively, yields the same term. It should be noted that
only variable-for-variable substitution is allowed.

Example. λx.x is α-equivalent to λz.z.
We can see that the bound variable x has been renamed to z. Applying

a substitution {z/x} to λx.x will yield λz.z. Therefore we say λx.x is alpha-
equivalent to λz.z.

Example. {(λx.x)/y}λy.y does not trigger the α rewrite rule.
This is because λx.x is not a variable.

The notion of α-equivalence and consequently α-conversion plays a role in
ensuring reduction happens in a sensible manner.

Beta Reduction
The purpose of the α-rewrite rule is to facilitate conversion between terms that
are α-equivalent. This is required as the only reduction rule of the pure λ-
calculus, the β rule requires a notion of bound variables.

A computation is said to have happened when an application of the β-
reduction rule is performed. Observe that the β-rewrite rule has additional
conditions attached to it. This condition is known as capture avoidance, a
useful notion to avoid name clashes.

Example. Consider the term (λx.λy.xy)y. Reducing without capture avoid-
ance would yield {y/x}(λy.xy) → λy.yy. This is wrong. Instead, the correct
thing to do would be to rename the bound variable in the left subterm first,
yielding the following rewrite sequence:

30

Variant BNF Describing the Variants

Normal Form (NF)
n ::= x

| (x n)

| λx.n

Head Normal Form (HNF)
n ::= x

| (x t)

| λx.n

Weak Normal Form (WNF)
n ::= x

| (x n)

| λx.t

Weak Head Normal Form
(WHNF)

n ::= x

| (x t)

| λx.t

Table 3.1: Normal Forms of the pure λ-calculus. t is a meta-variable denoting
an arbitrary term of the pure λ-calculus, as defined in Figure 3.1.1.

(λx.λy.x)y ↔α ({a/y}λx.λy.xy)y

=α (λx.λa.xa)y

→β λa.ya

Where does the new variable a come from? It comes from outside the sys-
tem that we’ve defined here thus far - i.e. it’s a meta-operation, called alpha-
conversion which is written ↔α.

Alpha conversion takes advantage of the fact that λy.xy and λa.xa are α-
equivalent. By simply renaming y to a (i.e. applying the α rewrite rule), we
have avoided a name clash. The meta-operation, alpha conversion is required
for correct reduction.

Can the outer free variable y be renamed? No. There are no rules for
renaming free variables.

3.4 Normal Forms
The concept of normal forms (NF) were introduced in the last chapter. The NF
of λ-calculus are terms that has no reducible subterms. Table 3.1 summarises
the variants of the normal forms of the pure λ-calculus in BNF.

For the purposes of evaluation of terms (i.e. for practical uses of λ-calculus),
some other notions of normal forms have to be introduced. Different evaluation
strategies will yield different kinds of normal forms. The section on evaluation
and operational semantics details this fact.

31

A term is in head normal form (HNF) if the head is in head normal
form. Note that a term in NF is a term in HNF. However, the converse is not
necessarily true. A term may be in HNF but not in NF.

Example. λx.(x ((λy.y)x)) is in head normal form, but is not in normal form.
The first subterm (x ((λy.y)x)) is in HNF. However its subterm ((λy.y)x)

is a redex and may be further reduced.

A term may be in a weak normal form (WNF). A WNF differs slightly
from HNF in that the body of a λ-term may be any term. However, the head
and body of an application are in normal form, as defined in Table 3.1. A term
in HNF is a term in WNF. However, the converse is not necessarily true. A
term in WNF may not be in HNF and not be in NF.

Example. (λx.(λy.y)x) is in weak normal form but not in head normal form
and not in normal form.

The first subterm (λy.y)x is a redex and may be further reduced.

A term may also be in weak head normal form (WHNF). A term in
WHNF is when it is not a redex. Terms often overlap in being in WNF and
WHNF.

Example. (λx.(λy.y)x) is in weak head normal form and in weak normal form,
but not in head normal form and not in normal form.

This is because (λy.y)x is a redex and may be further reduced.

The purpose of introducing variations of normal forms for the pure λ-calculus
has to do with evaluation. There are terms that cannot be reduced to a NF,
but are reducible to a variant of a normal form.

Example. Let Ω := (λx.xx) (λx.xx). Let I := λx.x. λx.IxΩ may be reduced
to λx.x ((λx.xx) (λx.xx)) which is in HNF, but not in NF.

Observe that Ω reduces to itself. It will never be in normal form. The next
section deals with termination and confluence, in which we shall explore Ω in
greater detail.

3.5 Confluence and Termination
Consider the following term:

r2︷ ︸︸ ︷
(λx. ((λy.xy)x)︸ ︷︷ ︸

r1

)a

There are two redexes ready for reduction, labelled r1 and r2 respectively.
Here, we have a choice of which redex to reduce first. If r1 is chosen first, then
the following reduction sequence occurs:

32

(λx.((λy.xy)x))a ⇀ (λx.xx)a

⇀ aa

However, if r2 were chosen, then the following reduction sequence occurs:

(λx.((λy.xy)x))a ⇀ (λy.ay)a

⇀ aa

We say that the reduction of the term is confluent, because regardless of
which path was taken, the final result is the same. More specifically, we say
that β-reduction is confluent up to α-conversion.

λx.((λy.xy)x))a

(λx.xx)a (λy.ay)a

aa

r1 r2

The β-reduction rule of the pure λ-calculus is confluent, but it is not normal-
ising. How is this possible? To investigate this further, we will have to refine our
notions of what we have thus far called “confluence” of the β-reduction rule. To
be really specific, the β-rule of the pure λ-calculus is locally confluent. Consider
the reduction of the following term:

(λx.xx)((λy.y)a)

(λx.xx)a ((λy.y)a) ((λy.y)a)

((λy.y)a)a a((λy.y)a)

aa

Observe that the red arrows form the diamond property. However, the re-
duction of (λx.xx)((λy.y)a) does not. The red diamond property is local to a
portion of the graph. Hence we say that β-reduction is locally confluent. The
reflexive transitive closure of the β-reduction, ⇀∗

β is confluent however. Martin
Lof [?] proved that one may replace ⇀∗

β with ⇀β . This also allows us to say
that β-reduction is confluent.

33

The key insight with local confluence however, is that it allows for reductions
to be non-terminating and yet be confluent. This allows the calculus to still be
useful while allowing for recursion.

Example. Let Ω := (λx.xx)(λx.xx). It is obvious that Ω reduces to itself,
therefore never terminates. Now, let K := λx.λy.x y and I := λx.x. The term
KIΩ may reduce to normal form under some evaluation strategies.

3.6 Evaluation and Operational Semantics
In λ-calculus, evaluation is done by applying the renaming and reduction rules
of λ-calculus on an expression of λ-calculus terms.

The values of the pure λ-calculus are variants of its normal forms. The kind
of normal form depends on the evaluation strategies used. Table 3.2 summarises
the kinds of normal forms taken as value for each evaluation strategy.

Evaluation Strategies

Evaluation
Strategy

Reduce
Args?

Reduce
Args First?

Reduces
Under λ? Values Are

Applicative Yes Yes Yes Normal Form
Normal Yes No Yes Normal Form
CBV Yes Yes No Weak Normal Form
CBN Yes No No Head Normal Form

Lazy No No No Weak Head Normal
Form

Table 3.2: Summary of evaluation strategies of λ-calculus and the results

An evaluation strategy is related to a reduction strategy. Following Fel-
leisen et al (2009), this report treats an evaluation strategy as distinct from a
reduction strategy. An evaluation strategy of λ-calculus revolves around how
applications are reduced. A reduction strategy had previously been introduced
- it refers to the choice of redex to reduce, and applies to all terms of the system.

This report considers five different evaluation strategies - call-by-value (CBV),
call-by-name (CBN), call-by-need (Lazy), applicative order evaluation and nor-
mal order evaluation. Table 3.2 summarises the similarities and differences
between the evaluation strategies.

To show each of the evaluation strategies, the following running example will
be used, labelled with meta variables:

(λx.λy.x y)︸ ︷︷ ︸
t

((

v︷︸︸︷
λz.z)(

w︷ ︸︸ ︷
λa.a))︸ ︷︷ ︸

u

b

34

Here, the expression is an application of two subterms, t and u. u itself is
an application of two subterms, which we will call v and w. We may write the
term as t (v w) b.

A normal order evaluation reduces the left-most outermost redex - t (v w)
first. The result is the application of {u/x} to λy.x y. An applicative order
evaluation reduces the right-most inner most redex - (v w) first. These two
evaluation strategies then proceed with evaluations under the λ.

By contrast, CBV, CBN and Lazy evaluation orders do not reduce under
the λ.

The following are reduction sequences for each of the evaluation strategies:

(λx.λy.x y)((λz.z)(λa.a))b = (λx.λy.x y)((λz.z)(λa.a))b

= (λy.((λz.z)(λa.a))y)b

= (λy.((λz.z)(λa.a))y)b

= (λy.(λa.a)y)b

= (λy.(λa.a)y)b

= (λy.y)b NF if b is not present
= (λy.y)b

= b

Figure 3.6.1: Normal order evaluation of the expression

(λx.λy.x y)((λz.z)(λa.a))b = (λx.λy.x y)((λz.z)(λa.a))b

= (λx.λy.x y)((λz.z)(λa.a))b

= (λx.λy.x y)(λa.a)b

= (λy.(λa.a) y)b

= (λy.(λa.a) y)b

= (λy.y)b NF if b is not present
= (λy.y)b

= b

Figure 3.6.2: Applicative evaluation of the expression

35

(λx.λy.x y)((λz.z)(λa.a))b = (λx.λy.x y)((λz.z)(λa.a))b

= (λx.λy.x y)((λz.z)(λa.a))b

= (λx.λy.x y)(λa.a)b

= (λy.(λa.a) y)b W(H)NF if b is not present
= (λy.(λa.a) y)b

= (λa.a)b

= (λa.a)b

= b

Figure 3.6.3: Call-by-value evaluation of the expression

(λx.λy.x y)((λz.z)(λa.a))b = (λx.λy.x y)((λz.z)(λa.a))b

= (λy.((λz.z)(λa.a))y)b

= (λy.((λz.z)(λa.a))y)b

= (λy.(λa.a)y)b (W)HNF if b is not present
= (λy.(λa.a)y)b

= (λa.a)b

= (λa.a)b

= b

Figure 3.6.4: Call-by-name evaluation of the expression

36

(λx.λy.x y)((λz.z)(λa.a))b = (λx.λy.x y)((λz.z)(λa.a))b

= (λy.((λz.z)(λa.a))y)b WHNF if b is not present
= (λy.((λz.z)(λa.a))y)b

= ((λz.z)(λa.a))b

= ((λz.z)(λa.a))b

= ((λz.z)(λa.a))b

= (λa.a)b

= b

Figure 3.6.5: Call by need evaluation of the expression

Having shown the reduction sequences for each evaluation strategy, we may
also define the operational semantics of each of the evaluation strategies. In
practice, only the CBV and CBN strategies are used. Their operational se-
mantics are given as follows

x⇒ x
s⇒ v

s t⇒ v t (λx.t)v ⇒ {v/x}t

Figure 3.6.6: Operational Semantics of Pure λ-calculus under a CBN strategy

x⇒ x
s⇒ v

s t⇒ v t
t⇒ v

s t⇒ s v (λx.t)v ⇒ {v/x}t

Figure 3.6.7: Operational Semantics of Pure λ-Calculus under a CBV strategy

3.7 Some Remarks on the Pure λ-Calculus
The pure λ-calculus is complicated. First, observe that the β-reduction rule
is defined in the terms of a meta-operation of substitution. This necessitates
definition of meta operations.

Second, for decades logicians and computer scientists were confused over
the notion of evaluation strategies and reduction strategies. As recent as 1996,
the notion of lazy evaluation was mistakenly described as “combining the ad-
vantages of normal order and applicative order evaluation” (Michaelson 1989,
p.199), and that “[lazy evaluation and normal order evaluation] are often used
interchangeably”(Abelson et al. 1996, p.542).

37

Chapter 4

Closure Calculus

Closure calculus (Jay 2018) is a term-rewriting system that began life as an
exercise to re-state λ-calculus without requiring meta-theory while keeping the
appealing properties of the pure λ-calculus. Its properties of progression and
confluence has been proved (Jay 2017). There are two flavours of Closure Cal-
culus, explained in the following sections. Closure Calculus draws from earlier
works on explicit substitution(Abadi et al. 1990) as well as work on closure
conversion (Reynolds 1972; Steele 1978; Appel 2007). Despite this, Closure
Calculus is different from other lambda calculi with explicit substitution in that
the only form of abstraction is a closure. Closure Calculus has all the desirable
properties of λ-calculus: it allows for equational reasoning; it’s a good theory of
functions; and it is Turing-complete, allowing for arbitrary computations to be
done.

The key differentiator of Closure Calculus from the pure λ-calculus is that
does not require the meta-theory of substitution. Substitution is explicit in the
terms of the language. This is also a differentiating point from other lambda
calculi with explicit substitution. Where in other lambda calculi with explicit
substitution uses multiple syntactic classes, Closure Calculus simply uses one
syntactic class. Thus the meta-theory of α-equivalence is not required. The
lack of meta-theory of substitution and α-equivalence allows for more efficient
mechanisation of the calculus.

Closure Calculus comes in two flavours. The Closure Calculus with Names
(CCN) contains variables with names. The Closure Calculus that is without
names (CCDB) takes inspiration from de Bruijn indexing. CCDB comes with
no meta theory, while CCN requires the meta-theory of variable equality.

This chapter explores Closure Calculus in the fashion set out by the chapters
preceding this. First, the terms are defined. Then the notion of substitution and
rewrite rules are defined. Next, the normal forms, confluence and termination
properties of CCN and CCDB are described. Following this, an exploration of
how evaluation of Closure Calculus terms may proceed. Last, some remarks on
Closure Calculus are given.

38

4.1 Terms
The terms of both flavours of Closure Calculus are given as follows in BNF form.

s, t, u :=

x (variable symbol)
| t u (application)
| t@u (tagged application)
| I (identity operator)
| σ :: x 7→ t (extension)
| λ[σ]x.t (abstraction)

(a) Terms of CCN

s, t, u :=

J (zeroth index)
| Rt (raise)
| t u (application)
| t@u (tagged application)
| I (identity operator)
| (u, s) (pair)
| λst (abstraction)

(b) Terms of CCDB

Figure 4.1.1: Terms of Closure Calculus

The main difference between CCN and CCDB is that there are variables in
CCN and no notion of variables in CCDB.

CCN
The terms of CCN are introduced by contrasting against the terms of the more
familiar pure λ-calculus.

A variable x and an application t u serve the same purpose as they do in
λ-calculus. As usual, a variable x is drawn from a countably infinite set. Like
in λ-calculus, applications in CCN associates to the left.

Next we turn our attention to the tagged application, t@u. The tagged ap-
plication plays a role in the reduction rules in that it differentiates redexes from
non-redexes. A tagged application is never a redex, while a regular application is
a redex. More on this will be explored in the section on reduction rules. Tagged
applications are left-associative, but binds more tightly than regular application
so that a b@c d is equivalent to (a (b@c))d.

In contrasting against λ-calculus, an immediate stand out is the form for an
abstraction. Where in λ-calculus an abstraction is written λx.M , in CCN it is
λ[σ]x.M . This form of abstraction is called a closure. The σ in λ[σ]x.M is
the environment of a closure, while x is the bound variable and the arbitrary
term M is the body.

While the syntax of CCN does not preclude any other term taking the place
of σ in an abstraction, the environment is usually of the form an extension or
the identity operator I. The identity operator commonly serves as an empty
environment. An extension has the form σ :: x 7→ t. It is a term σ, concatenated
with a mapping of a variable to another term. The extension serves a dual
purpose - as the environment of a closure, and as a substitution. These are

39

explain in the rules in the next section. The implications of not restricting the
form that σ could take in λ[σ]x.t will be discussed in Chapter 8.

We name specific structures of the λ-abstraction λ[σ]x.M so that we may
easily refer to the subterms, illustrated below.

λ

environment

[σ]
function

x
binder

. M
body

Whereas in the pure λ-calculus, the λ is an operator that generates a func-
tion, here a λ generates an environment with a function. This is commonly
known as a closure.

CCDB
The terms of CCDB are slightly different to the terms of CCN.

In the stead of variables are the zeroth index J and the raising operator Rt.
These operate in similar ways to the de Bruijn indexing in λ-calculus. Instead
of having a separate syntactic class for the variable index, as per the usual
de Bruijn indexing, the indices themselves are constructed of terms. J is the
zeroth index, which is bound by the immediate enclosing λ. RJ would be the
first index, bound by the second immediate enclosing λ, and so on and so forth.

Not having a separate syntactic class for variable indices has some implica-
tions - some will be explored in Chapter 8. The use of Rs and J in conjunction
with the reduction rules (introduced later in the chapter) appear to be similar
to lifting and lowering operations in traditional accounts of de Bruijn indexing.
In traditional accounts of using de Bruijn indexing in pure λ-calculus, lifting
and lowering are meta operations to avoid the α-conversion rule. In Closure
Calculus, there are no rules resembling the α-conversion rule. Thus, there is no
need for a separate, meta-operation for lifting and lowering. So what are R and
J? They are terms that when put together form an index to the bound variable.
CCDB has effectively no meta theory because of this.

The extension syntax in CCN is also replaced with a pair, written (u, s). s
is usually a meta-variable standing in for an environment. Like the extension
form in CCN, the pair has dual functions, serving both as an environment to
an abstraction - e.g s in λst, and serving as an explicit substitution.

Notational Shorthand
GivenM as some valid arbitrary subterm, the following pattern is very common
in CCN:

λ[I]x.λ[I :: x 7→ x]y.λ[I :: x 7→ x :: y 7→ y]z.λ[I :: x 7→ x :: y 7→ y :: z 7→ z]a.M

40

The mapping x 7→ x in the environment of the closure is required for proper
reduction to take place. Terms may have long environments which would make
for unwieldy reading.

For the sake of formatting, the following shorthand may be used:

λ[I]x.λ[I, x]y, λ[I, x, y]z.M

The syntactic shorthand [I, x] should be read as [I :: x 7→ x].
This shorthand only applies in terms where the environment solely consists

of mappings of variables to themselves.

Example. λ[I :: x 7→ (λ[I]x.x) :: y 7→ y]z.x@y will not be written in notational
shorthand. This is because the environment I :: x 7→ (λ[I]x.x) :: y 7→ y contains
mappings of variables to non-variable terms.

In CCDB, numerous raise operators R may obscure the understanding of
the term. Consider the term λIλ(J, I)λ(J,RJ, I)...RRRRJ... . A much more
readable term would be λ[]λ[0]λ[0,1]...4.... A natural number is a shorthand of
combinations of the raise operator R and the zeroth index operator J . Specific-
ally the natural number i is shorthand for RiJ . Additionally, observe that the
identity operator is replaced with the symbols [and]. The identity operator is
implicit in these cases. λ[1]M should be read as λ(RJ, I)M .

Contexts
There is little need to introduce the notion of substitution contexts for Clos-
ure Calculus. In the pure λ-calculus, the notion of a substitution context is
necessary because substitution is a meta-operation. Having a notion of sub-
stitution context aids both in reading and discussing terms of pure λ-calculus.
Substitution in Closure Calculus is part of the calculus. So the introduction
of substitution contexts is for really just comprehension benefits. Further, in-
troducing the term rewriting contexts for Closure Calculus allows a like-for-like
comparison with the pure λ-calculus. The term rewriting contexts for Closure
Calculus is given as follows:

• x is a context in CCN.

• J and Rt are contexts in CCDB.

• � is a context.

• If C1[] and C2[] are contexts then so is C1[]@C2[] and (C1[]C2[]).

• If C[] is a context, then so are σ :: x 7→ C[] and λ[σ]x.C[].

• If C[] is a context and M is an arbitrary term of Closure Calculus, then
C[M] denotes the result of placing M in the holes. A free variable in M
may become bound in C[M].

Example. Let C[] ≡ λ[I]x.λ[I, x]y.�. If M ≡ x then C[M] ≡ λ[I].λ[I, x]y.x.
Observe the free variable x in M is now bound.

41

4.2 Substitution
Substitution in Closure Calculus is not a meta-operation as is in the pure λ-
calculus. Instead a substitution is part of the object language1 of Closure Cal-
culus. Substitution proceeds from following the rewrite rules, introduced in the
next section.

In CCN, a substitution is written (σ :: x 7→ t), where σ is a meta-variable
representing another substitution2, x is a meta-variable for variable symbols,
and t is the meta-variable for an arbitrary term. Note here, the dual tasks
performed by the extension syntax. An extension in CCN is both a substitution
(i.e it’s a map from variable to term) and an environment in a closure.

In CCDB, a substitution is written (u, s) where both u and s are meta-
variables for valid terms. Like the extension of CCN, the pair in CCDB performs
dual duties in acting as a substitution and acting as an environment in a closure.

Usual treatments of substitutions when discussing λ-calculi involve a discus-
sion of free variables. Free variables in Closure Calculus are truly free. Consider
the following term:

(λ[I]x. λ[I]y.x)a

The reduction rules will be introduced in the next section, but the term above
reduces to λ[I]y.x. This may come as a surprise to the reader familiar with the
conventions of the pure λ-calculus. Why is x not bound by the preceding binder?

Consider a simple rule, which can be stated in English as “a free variable is a
variable that is not bound by a preceding binder”. Now consider an “equivalent”
term in the pure λ-calculus

(λx. λy.x)a

Is x free? It depends on the context in which we are discussing x. If we are
to discuss the underlined subterm λy.x by itself, then x is free. However, it is
not free in the term λx.λy.x. Variable freedom is dependent on context, hence
it is not universally defined.

By contrast, a free variable is free everywhere in Closure Calculus. In
the term λ[I]x.λ[I]y.x, the underlined subterm λ[I]y.x and in the full term
λ[I]x.λ[I]y.x, the variable x is free. No contexts are needed when discussing
free variables.

With such restrictions on free variables, how may one do meaningful com-
putation?

This is done by means of specifying in the environment, a variable to be
substituted upon:

1previously introduced in Notation Conventions of Chapter 1.
2usually - we may of course, construct perverse terms, a subject that will be explored in

Chapter 8

42

(λ[I]x.λ[I :: x 7→ x]y.x)a b

This term reduces to a as expected.
There is value in defining such a universal notion of free variables. The first

is that by removing meta-rules makes reasoning around the mechanics of the
reduction far simpler. When an interpreter encounters a free variable, it is free.
There is no need to figure out the context in which the interpreter is currently
in. The second benefit is that Closure Calculus is closer to the operational
semantics of modern computing machines than the pure λ-calculus is. This is
more thoroughly explored in Chapter 9.

4.3 Rewrite Rules
The rewriting rules of Closure Calculus only consist of reduction rules. It is
presented as such:

xt ⇀ x@t

(s@t)u⇀ (s@t)@u

(λ[σ]x.t)u⇀ (σ :: x 7→ u) t

I u ⇀ u

(σ :: x 7→ t)x⇀ t , if z = x

(σ :: x 7→ t)z ⇀ σ z , if z 6= x

(σ :: x 7→ t) (u@v)⇀ ((σ :: x 7→ t)u) ((σ :: x 7→ t)v)

(σ :: x 7→ t) (λ[ρ]z.t)⇀λ[(σ :: x 7→ t)ρ]z.t

(σ :: x 7→ t) I ⇀ I

(σ :: x 7→ t) (ρ :: z 7→ u)⇀ (σ :: x 7→ t)ρ :: z 7→ (σ :: x 7→ t)v

(a) Reduction rules of CCN

J t ⇀ J@t

Rtu ⇀ Rt@u

(r@t)u⇀ (r@t)@u

(λst)u⇀ (u, s)t

It ⇀ t

(u, s)J ⇀ u

(u, s)(Rt)⇀ st

(u, s)(r@t)⇀ (u, s)r((u, s)t)

(u, s)λr t ⇀ λ((u, s)r)t

(u, s)I ⇀ I

(u, s)(r, t)⇀ ((u, s)r, (u, s)t)

(b) Reduction rules of CCDB

Figure 4.3.1: Reduction rules of Closure Calculus

The rewrite rules for both variants of Closure Calculus are numerous, but
straightforwards. In CCN, two rewrite rules require meta operations of variable
equality in order to substitute terms. Variable equality is a straightforwards
meta-theory and implementation is trivial. The more discerning reader might
also prefer CCDB, where there are no meta-operations required in its reduction
rules.

Also, observe that there are no rules that resembles the α-rewrite rule in
the pure λ-calculus. This implies not having a formally-defined α-equivalence.
Hence λ[I]x.x and λ[I : y 7→ z]x.x and λ[I]y.y are all considered different terms,
while in the pure λ-calculus, λx.x and λy.y are considered the same.

43

There is no need for capture avoidance either. The interaction between the
environment subterm and extensions ensures that names are preserved through-
out reduction.

Example. Consider the term (λ[I]x.λ[I, x]y.x) y. The following reduction se-
quence ensues:

(λ[I]x.λ[I, x]y.x) y ⇀ (I :: x 7→ y)(λ[I :: x 7→ x]y.x)

⇀ λ[((I :: x 7→ y)I) :: x 7→ ((I :: x 7→ y)x)]y.x

⇀ λ[((I :: x 7→ y)I) :: x 7→ y]y.x

⇀ λ[I :: x 7→ y]y.x

Having seen an example of a reduction sequence in Closure Calculus, it
is now time to revisit one of two things that makes Closure Calculus unique
- tagged applications. Tagged applications delays applications until suitable
substitutions may be made. More importantly, tagged applications allows for
differentiation between redexes and non-redexes. The only way to eliminate a
tagged application is through application of an extension.

Example. Consider the term (λ[I]x.x@x)a. The reduction sequence is as fol-
lows:

(λ[I]x.x@x)a→ (I :: x 7→ a)(x@x)

→ ((I :: x 7→ a)x) (I :: x 7→ a))

→ (a (I :: x 7→ a))

→ (aa)

→ (a@a)

Something to note is that normal applications between two variables will be
reduced to a tagged application. A tagged application ensures binding is stable,
since reduction of the body may expose variables that were previously hidden.
Thus terms can almost always be reduced to a normal form.

4.4 Normal Forms
The normal form of Closure Calculus is as defined in the earlier chapters: terms
that are no longer contain any redex in its subterms. Unlike in the pure λ-
calculus, there is only one kind of normal form in Closure Calculus and is given
as follows:

44

n := x | n@n | λ[n]x.n | I | n :: x 7→ n

(a) Normal Forms of CCN

n := J | Rn | n@n | λnn | I | (n,n)

(b) Normal Forms of CCDB

Figure 4.4.1: Normal Forms of Closure Calculus

The reduction rules of Closure Calculus is such that terms are almost always
in NF. However, it should be understood that Closure Calculus itself is not
strongly normalising nor is it weakly normalising. As will be shown in the next
section, there exist terms in Closure Calculus that will never terminate.

A convenient way to think about the normalisation property in Closure Cal-
culus is that programs and inputs will always be in NF. However, applicative
reduction of terms in NF may yield non-terminating terms.

4.5 Confluence and Termination
The reduction rules of Closure Calculus are confluent (Jay 2017). Reduction is
confluent in the sense of local confluence. This means Closure Calculus supports
recursive terms. We may also write recursive programs in normal form. The
following sequence of examples explain the preceding two sentences.

Example. Let Ω := (λ[I]x.x@x) (λ[I]x.x@x). This is a self-applying (or re-
cursive) term. The reduction sequence is as follows:

(λ[I]x.x@x) (λ[I]x.x@x) → (I :: x 7→ (λ[I]x.x@x)) (x@x)

→ ((I :: x 7→ (λ[I]x.x@x))x) ((I :: x 7→ (λ[I]x.x@x))x)

→ (λ[I]x.x@x) ((I :: x 7→ (λ[I]x.x@x))x)

→ (λ[I]x.x@x) (λ[I]x.x@x)

→ ...

Having seen an example of a recursive term in Closure Calculus, what does
it mean when I wrote “we may also write recursive programs in normal form?
The following four examples build on one another.

Example. Let Ω := (λ[I]x.x@x) (λ[I]x.x@x); K := λ[I]x.λ[I, x]y.x y and I :=
λ[I]x.x. The term KIΩ will never terminate. Now, define an alternative version
Ω′ := (λ[I]x.x@x)@(λ[I]x.x@x). Ω′ is recursive and in NF as there are no
redexes. The term KIΩ′ terminates.

Is Ω the same as Ω′? This question is about a possible confusion between
the usual term application and tagged term application. A tagged application
is not the same as a usual term application. Ω is not the same as Ω′. The use

45

of tagged application in Ω′ shows that we may elect to have a recursive term in
NF.

One might complain that KIΩ is not a recursive program in the traditional
sense in that a recursive program is a function preceded by a fix point combin-
ator. So let’s look at one with Curry’s Y combinator.

Example. Let Y := λ[I]f.(λ[I, f]x.f@(x@x))@(λ[I, f]x.f@(x@x)). Observe
that Y is in NF. The reduction sequence of Yg is as follows (note that the Ω
placeholder is not the same one as in the example above):

Yg → (I :: f 7→ g)(λ[I, f]x.f@(x@x))@(λ[I, f]x.f@(x@x))

→∗ (λ[I :: f 7→ g]x.f@(x@x)) (λ[I :: f 7→ g]x.f@(x@x))

≡ ΩΩ

≡ (λ[I :: f 7→ g]x.f@(x@x))Ω

→ (I :: f 7→ g :: x 7→ Ω)(f@(x@x))

→∗ g (ΩΩ)

≡ g ((λ[I :: f 7→ g]x.f@(x@x))Ω)

≡ g (g (ΩΩ))

→ ...

The reduction of Yg never terminates.

Remark. Having Y being in NF is not particularly useful. A recursive program
like addition would need to be shown to be in NF. An obvious candidate is the
usual modification of the Y combinator into the Z combinator. However, this
does not work either:

Example. Let Z := λ[I]f.(λ[I, f]x.f@(λ[I, f, x]y.x@x@y))@(λ[I, f]x.f@(λ[I, f, x]y.x@x@y)).
The reduction sequence of Zg is as follows:

Zg → (I :: f 7→ g) (λ[I, f]x.f@(λ[I, f, x]y.x@x@y))@(λ[I, f]x.f@(λ[I, f, x]y.x@x@y))

→∗ (λ[I :: f 7→ g]x.f@(λ[I, f, x]y.x@x@y)) (λ[I :: f 7→ g]x.f@(λ[I, f, x]y.x@x@y))

≡ ΩΩ

≡ (λ[I :: f 7→ g]x.f@(λ[I, f, x]y.x@x@y))Ω

→ (I :: f 7→ g :: x 7→ Ω)(f@(λ[I, f, x]y.x@x@y))

→∗ g@λ[I :: f 7→ g :: x 7→ Ω]y.x@x@y

Observe that the result is in NF, albeit a particularly useless one. Recall
that a tagged application may only be removed with an extension. The usual
way to get an extension would be via a closure. However, the result is a naked
tagged application. If instead of g, an abstraction λ[M]x.N is used, then the
reduction may further continue. However it is unlikely one would get the desired
result, which is a recursive program in normal form.

46

Remark. It is easy to confuse Closure Calculus for a more traditional λ-calculus
with an eager strategy.

Instead, let us consider a variant of the Z combinator, in which y is placed
just after x.

Example. Let Z := λ[I]f.λ[I, f]x.(λ[I, f, x]y.f@(x@x@y))@(λ[I, f, x]y.f@(x@x@y)).
The reduction sequence of Zg is as follows:

Zg → (I :: f 7→ g) λ[I, f]x.(λ[I, f, x]y.f@(x@x@y))@(λ[I, f, x]y.f@(x@x@y))

→∗ (λ[I :: f 7→ g)x.(λ[I, f, x]y.f@(x@x@y))) (λ[I :: f 7→ g)x.(λ[I, f, x]y.f@(x@x@y)))

≡ Ω Ω

≡ (λ[I :: f 7→ g)x.(λ[I, f, x]y.f@(x@x@y))) Ω

→∗ λ[I :: f 7→ g :: x 7→ Ω]y.f@(x@x@y)

Here we can see that Zg is indeed in normal form waiting for an input so
that it may further reduce. If g were another function, then this would be a
recursive program.

The Z combinator presented here is a recursive program in the sense that
it’s a function proceeded by a fix point operator. However, it is a defective one,
and cannot fully represent primitive recursive functions.

This may be remedied by using a Closure Calculus version of Turing’s Y
combinator, written as follows:

ω := λ[I]z.λ[I, z]f.λ[I, z, f]x.f@(z@z@f)@x

Y := λ[I :: z 7→ ω]f.λ[I, z, f]x.f@(z@z@f)@x

Now all recursive programs may be written in normal form!

4.6 Evaluation and Operational Semantics
In Closure Calculus, evaluation is done by applying reduction rules of Closure
Calculus on an expression of Closure Calculus terms. It should be noted that
values in Closure Calculus is exactly that of its normal form, given in Figure
4.4.1.

Closure calculus represents a freedom from the tyranny of evaluation strategies
- one simply needs to reduce the term to normal form for evaluation. There is
no need for a call-by-name, call-by-value or any other evaluation strategies that
may change its confluence properties.

The operational semantics of both flavours of Closure Calculus are given as
follows:

47

x⇒ x I ⇒ I
s⇒ v1 t⇒ v2

s@t⇒ v1@v2

σ ⇒ v1 u⇒ v2

λ[σ]x.u⇒ λ[v1]x.v2

s⇒ v1 t⇒ v2 v1 v2 ⇀ u u⇒ v
s t⇒ v

σ ⇒ v1 u⇒ v2

σ :: x 7→ u⇒ v1 :: x 7→ v2

Figure 4.6.1: Operational Semantics of CCN

J ⇒ J
t⇒ v

Rt⇒ Rv I ⇒ I
s⇒ v1 t⇒ v2

s@t⇒ v1@v2

σ ⇒ v1 u⇒ v2

λσu⇒ λv1v2

s⇒ v1 t⇒ v2 v1 v2 ⇀ u u⇒ v
s t⇒ v

σ ⇒ v1 ρ⇒ v2

σ, ρ⇒ v1, v2

Figure 4.6.2: Operational Semantics of CCDB

Like the reduction rules, while there are many evaluation rules to Closure
Calculus, they are straightforwards with no meta theory requirement.

4.7 Some Remarks on Closure Calculus
This chapter on Closure Calculus would be very much shorter if only one variant
of Closure Calculus were discussed. Given the structures of this chapter and the
two chapters preceding it are very similar, we may compare the structures of
the chapters and come to the conclusion that Closure Calculus is indeed simpler
than the pure λ-calculus.

The lack of required meta-operations that makes Closure Calculus simpler
than the pure λ-calculus. The lack of meta theory leads to fewer notions of
normal forms and fewer notions of evaluation strategies. On a whole Closure
Calculus is simpler than the pure λ-calculus. In the next part, we’ll see how a
simpler calculus leads to simpler implementations.

Is Closure Calculus Strongly Normalising?
No. Reduction of terms does not guarantee a normal form - there exists terms
that never terminate. However, recursive programs can be written in normal
form without resorting to variations such as head normal forms. This can lead
to some amount of confusion.

Translating Pure λ-Calculus to Closure Calculus
There exists a straightforwards translation of the pure λ-calculus to CCN. How-
ever, the inverse is not true, as there can be terms defined in Closure Calculus
that cannot be defined in λ-calculus. In this section, a method of converting
from pure λ-calculus to CCN is defined.

The translation method is inductively defined:

48

let r, s, t ∈ Termsλ;

let u, v,w ∈ TermsCCN ;

�xλ� = xCCN

�s t� = {
�s�@�t� if s t is under λ
�s� �t� otherwise

�λx.t� = λ[I :: y 7→ y]x.�t� ∀y ∈ BV (t)

Translating terms of the pure λ-calculus to that of Closure Calculus must
ensure that reduction is preserved. This is to say that (λx.x)M which reduces
to Mmust be translated to a term in Closure Calculus so that the result is the
Closure Calculus equivalent, �M�.

The translation of terms in pure λ-calculus to Closure Calculus is to be
considered on two levels. They may be conceptually thought of as program and
its application. These concepts will be explored further in the next chapter.
Briefly, a program is a description of the computation (reductions in the context
of lambda calculi) to be done. When translating programs of the pure λ-calculus,
any application (t u) are translated into tagged applications in CCN. When
considering the applicative case - i.e. an application of a program to its input,
then applications in λ-calculus may be replaced by applications in CCN.

Because free variables are universally free in CCN terms, care must be taken
when translating abstractions from λ-calculus to Closure Calculus. The trans-
lation scheme defined yields larger CCN terms, but they still reduce as expected

Example. �λx.λx.x� = λ[I :: x 7→ x]x.λ[I :: x 7→ x]x.x. This is contrary to the
usual translations encountered in this chapter, which would read λ[I]x.λ[I ::
x 7→ x]x.x. Nonetheless, reduction proceeds as expected. The λ-calculus term,
when applied to inputs, v and w, proceeds as follows:

(λx.λx.x) v w→ (λx.x)w

→ w

The translated terms would yield the following reduction sequence:

(λ[I :: x 7→ x]x.λ[I :: x 7→ x]x.x) v w→ (I :: x 7→ v)(λ[I :: x 7→ x]x.x)w

→ ((I :: x 7→ x :: x 7→ v)(λ[I :: x 7→ x]x.x))w

→∗ (λ[I :: x 7→ (I :: x 7→ x :: x 7→ v)x])x.x)w

→ (λ[I :: x 7→ v]x.x)w

→∗ w

Translating from one language to another is the core of what programming
language compilation is all about. The next chapter explores that notion in
detail.

49

Part II

Implementation and
Comparisons

50

Chapter 5

On Implementations and Fair
Comparisons

The thesis of this report asserts that Closure Calculus is better than the pure
λ-calculus. However, in comparing the lambda calculi, a number of subtle issues
arise and must be considered. This chapter deals with issues surrounding the
comparison and implementation of the lambda calculi.

Comparisons are done only on cases where complete evaluation is possible.
The first section justifies such a comparison. Then, the intricacies of implement-
ing an operational semantics is explored in the following two sections - first a
general overview of implementing operational semantics, then a description of
the implementations. Next, a consideration of δ-rules is given. Finally, the tests
and benchmark suite are described, along with justifications thereof.

5.1 Why Compare Reductions to Normal Forms?
Although this report is mainly focused on comparing Closure Calculus to the
pure λ-calculus, the comparison is informed by the desire to show Closure Cal-
culus is the superior lambda calculus to be used as the theoretical basis of
functional programming languages. Confusion is easy when discussing lambda
calculi in the context of programming languages, so care is given to the rationale.
A brief paragraph explaining the subtleties follows.

A program is a body of structured text comprising of symbols whose mean-
ings (semantics) may be interpreted at whim of the language implementor. A
lambda calculus is like a programming language - it is a body of structured text
comprising of symbols. Its semantics however, is well defined. The notion of an
operational semantics had been introduced in the previous chapters. When a
programming language has a theoretical basis in a lambda calculus, this means
the operational semantics of the programming language is an extension of the
operational semantics of the lambda calculus.

51

Programming language implementors would be interested in the comparisons
in this report insofar as operational semantics are concerned.

The pure λ-calculus has multiple operational semantics - call-by-name (CBN),
call-by-need, call-by-value (CBV), applicative order and normal order were the
ones introduced in this report. Each of these operational semantics defines a
variant of a normal form as a value. For example, in the operational semantics
associated with CBN, values are in head normal form.

Closure Calculus however, only has one operational semantics defined so far.
The values in an evaluation context are normal forms in the strictest sense of the
word. The notion of head reduction in Closure Calculus has not been studied.
It may be argued that the virtues of Closure Calculus as a lambda calculus
negates the need for head reduction. However, that will be left as future work.
For now, let us delve into the finer points of making comparisons between the
lambda calculi.

We say a pure λ-calculus term tΛ is analogous with a Closure Calculus term
tCC if by applying the translation in Subsection 4.7 of Chapter 4 to tΛ, we
obtain tCC . This is commonly called a simulation. However, we avoid the term
simulation as that comes with implications that may not be justified. Further
discussions on simulations are given in the next section.

Having introduced the notion of two terms being analogous, it is now shown
that direct analogies are a little difficult as shown by the following example.

Example. Consider the reductions of the following term in pure λ-calculus
(λx.λy.x y) ((λz.z) (λa.a)), and its Closure Calculus translation,
(λ[I]x.λ[I, x]y.x@y) ((λ[I]z.z) (λ[I]a.a)). The subterms in red are programs that
each expect two inputs. The subterm in blue is the first input.

The operational semantics of the pure λ-calculus with a CBV evaluation
strategy is closest to the operational semantics of Closure Calculus so we com-
pare them presently. Under a CBV evaluation strategy, the pure λ-calculus
term reduces to λy.(λa.a)y while the Closure Calculus term reduces to λ[I ::
x 7→ (λ[I]a.a)]y.x@y. These two terms are not analogous. A translation of the
pure λ-calculus result to Closure Calculus does not yield the Closure Calculus
result.

That pure λ-calculus terms are not analogous to Closure Calculus terms
extends mostly on partially evaluated terms. Complete evaluation of the terms
usually yield a value that is analogous in Closure Calculus. There are exceptions.
These are discussed and justified in Chapter 8. Observe that the end result of
complete evaluations are always in normal forms, so that the a translation of
pure λ-calculus result will yield the Closure Calculus result.

It is on this basis that a fair comparison between the lambda calculi may be
made. Happily, this plays well into the aims of programming language imple-
mentors. After all, the purpose of most programs are to completely evaluate its
inputs.1.

1For now, let’s put aside considerations for Futamura projections.

52

5.2 On the Implementation of Operational Se-
mantics in General

The modern computer are based on the von Neumann architecture. Without
loss of generality, the von Neumann architecture is a realisation of a Universal
Turing Machine (UTM) with some limitations imposed. A UTM is able to
simulate any Turing Machine.

Informally we say two systems are equivalent if they can simulate each other.
The pure λ-calculus and Turing machines simulate each other, as shown in the
addendum of Alan Turing’s seminal paper on computation (Turing 1937). This
equivalence is usually called the Church-Turing thesis. Unfortunately, due to
the informal nature of stating such an equivalence, it has led to some confusion
about what the thesis is actually about. Jay and Vergara (2014) provides a good
overview of the confusion and the consequence thereof. A brief treatment of the
confusion is provided in the section of the appendix titled On the Confusion of
the Church-Turing Thesis. For the rest of this report, we will assume that the
Church-Turing thesis holds, at least up to computation of numerical functions.

Programming languages provide operational semantics such that the desired
behaviours of the language may be correctly simulated by a computer. To
proceed, I shall have to be clearer on what some words mean.

Let there be two systems of computation, V and Λ, representing a von Neu-
mann machine with random access memory (as modern computers are) and a
λ-calculus respectively. The term of Λ represented in V and vice-versa is called a
representation. An encoding ρ is an injective function used to encode terms
in Dom(Λ) to terms in Dom(V), written ρ : Λ → V . An encoding is usually in
form of a scheme, to be instantiated on specific terms.

Encoding static terms of Λ to its representation is trivial. Using the pure
λ-calculus as an example Λ, we may elect to minimally represent the term λx.x
with 4 bits of machine memory: 0010 as shown by Tromp (2018).

Static terms are uninteresting. Interesting things happen when a term is ap-
plied to another. To fully simulate a system we must also simulate the behaviour
of the reduction rules. More specifically, we must also encode the operational
semantics of Λ in V . The encoded representation is called an execution model
of Λ on machine V .

A full description of machine V may be too complex for the purposes of
creating an execution model of Λ. For example, we would not want to be
discussing implementing a λ-calculus in terms of which logic gate to activate.
So instead, we abstract over the finer grained details to arrive at a description
of a machine with just enough details to implement the execution model of Λ.
This is called an abstract machine.

Function application in Λ is instantaneous. However, with the advent of
stored-program computers, the notion of a function is somewhat broken. Ac-
cordingly we may now separate the notion of a function into its static component
and its dynamic component. Its static component is what is written, while its
dynamic component is what happens when a function is applied. In modelling

53

a λ-calculus as a programming language, we can then split the reduction phases
into two: compile phase and runtime phase.

Example. Consider the term λx.((λy.y)x). It is ready to take an input at
run time. While nothing is wrong with directly encoding the term into a von
Neumann machine, it would be very inefficient to reduce everything at run time.
Instead, we would like to reduce to normal form at compile time, so that at run
time, minimal amounts of work would be done. A very good compiler would
reduce the term, even under the λ, such that at run time, λx.x is the program
being run. Such a compiler is quite hard to write, owing to ill-defined notions
of reduction on open terms.

Hence we will need to have the term reducer at both compile time and at
run time. A runtime system is a collection of functions that allow for the
operational semantics of the language to be used at run time. This usually
includes memory allocation functions and garbage collection functions.

Having introduced to the the notion of implementing an operational se-
mantics by simulation into a von Neumann machine, it should be noted that
implementations of operational semantics is still very much an open research
topic - there is no generally agreed-upon best way of implementing an oper-
ational semantics. The choice of implementing the operational semantics of
the lambda calculi in this report is geared towards being able to make a fair
statement about the performance characteristics of the lambda calculi.

5.3 On the Implementation of the Lambda Cal-
culi

The calculi are implemented in an imperative programming language - Go. A
primer in the programming language is given in the Appendix. Thus this section
concerns the design of the interpreters.

The usual choice to implement operational semantics of lambda calculi are
functional programming languages like Haskell or OCaml. Go was chosen as its
syntax and semantics are closer to the underlying semantics of the underlying
machine. Thus an implementation of an operational semantics in form of an
interpreter is a realistic representation of an implementation of the operational
semantics on a von Neumann machine. Further, Go allows for careful manage-
ment of the data structures used such that the interpreters are not biased one
way or another.

The interpreters are designed so that the data structures used are shared as
much as possible. This ensures any differences between the performance of the
interpreters will not be due to differing designs. As such, the data structures
representing a term of a lambda calculus are share between the interpreters.
The following section describe first the data structures that are used, followed
by a section describing management of memory. Then a description of the
metadata that is tracked by the interpreters is given. Finally, the interpreters
are described.

54

The source code may be found at https://github.com/chewxy/cccombos.
All subdirectories mentioned in this report is relative to the root directory that
is the repository. The subdirectories cbv, cbn, ccn and ccdb contain the re-
spective interpreters. In each interpreter’s subdirectory, there are one or more
prelude subdirectories. These prelude subdirectories define common terms for
the purposes of the benchmarks and tests.

Representing Terms
A term is represented by a struct. The definition can be found in internal/termso1/manager.go.
Alternative representations are discussed in the Appendix. It’s defined as fol-
lows.

type Term s t r u c t {
pred Pred i ca te
f s t Ptr
snd Ptr
id Ptr

}

A Predicate is a label denoting the kind of term. The complete listing of
predicates can be found in internal/termso1/predicate.go.

fst and snd are pointers to other terms, while id is the given unique identity
for a term. The id field is part of the required book-keeping when implementing
an interpreter, and is not strictly part of the term. All fields are represented by
4 bytes. We may visualise a CCN term, λ[I]x.x as such:

pred

λ

fst snd id

0

pred

I

fst snd id

1

pred

var

fst snd id

2

Conversely, the pure λ-calculus term λx.x is visualised as such:

pred

λ

fst snd id

0

pred

var

fst snd id

1

55

These structures corresponds well to natural visualisations of the terms as
trees:

λx

I x

λx

x

In practice the objects are allocated as closely as possible for performance
purposes, so they actually look more like this (for the CCN term λ[I]x.x):

pred

λ

fst snd id

0

pred

I

fst snd id

1

pred

var

fst snd id

2

The observant reader will note that there are no names in the Term struct.
A λ binds a name. Without a name, how can there be computation?

The spartan nature of the Term struct was chosen by design. The rationale
for the design shall presently be given, followed by an explanation of handling
of names.

First, consider the evaluation of the a term of the pure λ-calculus: (λx.M)y.
Assuming the names are normalised such that β-reduction may proceed (that is
to say, all checks and α-conversions have been done), full β-reduction requires
traversing the entirety of M , in order to replace all matching x in M with
y. Indeed, when evaluating a term of a λ-calculus, the majority of operations
are tree-traversal operations. Hence, an easily traversable data structured is
preferred for performance sake.

Next, consider the depth-first traversal of any given term. Every algorithm
that traverses a tree data structure depth first uses a stack. The stack may
be implicit, as is the case when recursively traversing the structure. When
using recursive functions to traverse a tree depth first, the stack provided by
the programming language runtime is used. The stack may not be available to
the programmer for manipulation, but it is nonetheless there.

When traversing a term at depth N + 1, an interpreter would have to hold
the data of N previous levels in its stack. We are hence presented with two
design choices. One, allocate the object representing a term on the heap, and
keep a pointer to it on the stack. Two, allocate a sufficiently small object on the
stack. The benefits of the former is that we are able to store more (pointers to)
terms on the stack, allowing for longer computations. However, this comes at

56

a cost: allocating objects on the heap creates plenty of garbage. Most garbage
collecting algorithms scan for pointers on the stack in order to mark objects as
being alive or dead. Dead objects are scheduled for collection. This imposes a
large overhead at runtime. The latter design choice sidesteps this issue by not
having to allocate any objects on the heap. The cost of doing so is that we may
not be able to store as many terms on the stack as we would have had the first
design choice been chosen.

There exists a tension between performance and maximal complexity of pro-
grams that are able to be run. This tension is hard to resolve. In most com-
pilers, an analysis pass is performed to analyse whether an object is suitable to
be destined for the stack or heap. This is called escape analysis2.

Building a compiler with many analysis phases is not in scope of the project,
hence a decision was made to optimise to use the stack more. This decision is
further bolstered by the fact that modern computers have very large stacks -
much more than any program that can realistically be written directly in the
calculi. Further, the Term struct takes 2 machine words on a modern machine,
while a pointer to the heap takes 1 machine word. The decision is obvious.

So how are the names managed?
Names are managed through a another structure, the Datum structure, defined

as follows:

type Datum s t r u c t {
Name, MetaName s t r i n g

}

The use of the Datum struct, the Term struct are very much tied into the memory
manager. The following section on the memory manager clarifies the use of the
Datum structure.

The Memory Manager
The memory manager is a key component in the design of the interpreters of
the calculi. Go is a programming language with managed memory. In general,
managed memory makes for a safer programming language experience. Like
most programming languages with managed memory, Go’s garbage collector al-
gorithm is non-deterministic at compile time. Therefore, the garbage collector
may interfere with benchmarking the performance of the various calculi. We
wish to avert that, therefore, the use of a manual memory manager is required.
Happily, the design with the memory manager reinforces the design for repres-
enting terms.

The Manager struct, found in internal/termso1/manager.go represents
the memory manager. A brief description of the fields is presented after the

2At the time of writing, Rust has one of the most advanced escape analysis in production-
ready programming languages, albeit very much human aided (in the sense that one needs
to “fight the borrow checker”). Interestingly the GHC compiler for Haskell does very minimal
escape analysis, preferring to allocate large portions of objects on the heap. Unsurprisingly,
the garbage collector of GHC is one of the primary complaints against it.

57

definition.

type Manager s t r u c t {
terms [] Term
data [] Datum
f r e e l i s t map [Ptr] s t r u c t {}

}

The major design pattern for the memory manager is an arena-based manage-
ment with a very simple allocation strategy. The common name for the design
and data access strategy is a Structure of Arrays. This design splits a term into
two parts (Term and Datum) based on use frequency. Observe that in reduc-
tions of terms, the name is not often accessed or used. So the Datum structure
represents less-frequently-used data. This way, the reductions are optimized for
performance.

terms is an array of Term objects, serving as the arena of memory dedicated
to storing Term objects. The id field of a Term object is simply the index
of the object within the memory manager. For every Term object, there is a
corresponding Datum object that is created and stored in the data field. One
may think of that as a separate region of memory that is earmarked for use
specifically to objects of the Datum type. Hence the datum of the ith Term
object is also the ith Datum object. Last, the freelist field is a set of Term
objects that are free for use. Further explanations on how the memory manager
works will clarify the use of freelist .

The role of the memory manager is to manage the Term objects. The memory
manager allocates Term objects. When it needs to allocate a new Term object,
it first checks to see if there are any already-allocated objects that are available
for use in the freelist. It also manages the freeing of objects. Instead of
returning memory to the system, the memory manager clears the fields of a
Term object, adds the id of the free object back into the freelist. This way,
the majority of the work done for allocating and freeing objects in memory is
constant, allowing for a fairer comparison between the calculi.

Metadata
One of the comparisons to be done is the number of reduction operations and
meta-operations each calculus performs. To do that, we would need to keep
count of each operation. Given that this counting is global (i.e. all interpret-
ers in this project have this requirement), the data structure for the book-
keeping of counting operations is shared across all interpreters. It’s defined in
internal/meta/meta.go. A brief description of each field follows the definition:

type Metadata s t r u c t {
// Counting
RuleMatch [1 6] i n t
MetaOp [maxMeta] i n t // cannot be summed !

58

Rules i n t

// Logging
Logger ∗ l og . Logger
Restr ictDepth i n t
depth i n t

}

RuleMatch is an array of integers. The index of the array indicates the rule.
The values indicate the number of times a rule has fired. Because no calculus
has more than 16 rules, a finite array of 16 is able to account for all the rules of
all the calculi considered. MetaOp is another array of integers, whose purpose is
to keep count the number of meta-operation rules fired. The counting of meta-
operations overlap, and hence the counts cannot be summed. The following are
the meta-operations that are being counted:

• VarEq - Variable equality checks

• Sub - Substitutions

• TermEq - Term equality

• Fresh - Fresh variables generated

• Capture - Variable capture checks

• UnionFV - Unions of free variable sets

Additionally Rules indicate how many reduction rules an interpreter has. The
CCN interpreter has 10 rules, CCDB has 11, while the pure λ-calculus inter-
preters has only 2 or 3 rules. This is required because the RuleMatch field is
a fixed-size array that is fixed at compile time. The size is fixed to be larger
than the number of rules for either calculi. As an implementation detail, 16 was
chosen to fit within the memory lines of the processor, leading to fewer cache
misses, and hence higher performance.

The remaining three fields, Logger, RestrictDepth and depth concern the
logging of evaluations. The Logger field points to an output file to write the
logs to, while RestrictDepth controls the logging up to a certain depth of
evaluation. The depth field stores the current depth of the evaluation.

The Interpreters
Now we are ready to discuss the interpreters. Each calculus has its own inter-
preter, each in their own package. All interpreters share a common structure
- that is, a composition of Metadata and Manager. There are also, for each
interpreter, configuration related fields. All interpreters are defined in a fashion
similar to this:

59

type I n t e r p r e t e r s t r u c t {
Metadata
Manager

// other f i e l d s f o r c on f i gu r a t i on o f the i n t e r p r e t e r
}

The structural operational semantics of each calculus provides the rules for
interpretation. One may think of the structural operational semantics as a very
concise definition of the interpreter. The structural operational semantics for
the calculi, previously introduced in the previous chapters are repeated here for
comparison:

x⇒ x I ⇒ I
s⇒ v1 t⇒ v2

s@t⇒ v1@v2

σ ⇒ v1 u⇒ v2

λ[σ]x.u⇒ λ[v1]x.v2

s⇒ v1 t⇒ v2 v1 v2 ⇀ u u⇒ v
s t⇒ v

σ ⇒ v1 u⇒ v2

σ :: x 7→ u⇒ v1 :: x 7→ v2

Figure 5.3.1: Operational Semantics of CCN

J ⇒ J
t⇒ v

Rt⇒ Rv I ⇒ I
s⇒ v1 t⇒ v2

s@t⇒ v1@v2

σ ⇒ v1 u⇒ v2

λσu⇒ λv1v2

s⇒ v1 t⇒ v2 v1 v2 ⇀ u u⇒ v
s t⇒ v

σ ⇒ v1 ρ⇒ v2

σ, ρ⇒ v1, v2

Figure 5.3.2: Operational Semantics of CCDB

x⇒ x
s⇒ v

s t⇒ v t
t⇒ v

s t⇒ s v (λx.t)v ⇒ {v/x}t

Figure 5.3.3: Operational Semantics of Pure λ-Calculus (CBV)

x⇒ x
s⇒ v

s t⇒ v t (λx.t)v ⇒ {v/x}t

Figure 5.3.4: Operational Semantics of call-by-name λ-calculus

The interpreter rules are implemented as methods on the Interpreter ob-
ject. Implementation is rather straightforwards. The rules are implemented as
a switch table, switching on the given predicate. Each inference rule’s premise
is the switch condition, and the conclusion of each inference rule is the body.

Upon first glance, it would appear that the operational semantics for CCN
and CCDB are far more complex than that of the pure λ-calculus. What is

60

left out of the pure λ-calculus’ operational semantics is the meta-operations
required. An honest implementation would count both parts of the interpreter,
for meta-operations too take computational resources.

5.4 δ-Terms and δ-Rules
While both the pure λ-calculus and Closure Calculus are Turing complete - in
the sense that both calculi are able to define computable functions on natural
numbers - modern computers have built-in support for numbers and their op-
erations. For the purposes of benchmarks, the calculi are extended with δ-rules
to take advantage of these built-in operations.

New terms are added to each of the calculi, given as follows:

s, t, u := ... (previous definitions from each individual calculus)
| N (natural numbers)
| True | False (booleans)
| t+ u | t− u | t× u | t÷ u | t mod u (arithmetic)
| t < u | t ≤ u | t > u | t ≥ u | t = u (comparisons)
| if t then u else s (conditional)

All δ-terms are representable by a Term. New Predicates are defined for
each of the δ-term. For values (natural numbers and booleans), the Fst field
of a Term is used to store the value. The natural numbers are implemented as
finite, 32-bit unsigned integers. Booleans are also represented by 32-bit unsigned
integers where 1 represents True and 0 represents False.

Additional reduction rules, the δ-rules are defined and given here as opera-
tional semantics as follows (�·� indicates the results of the built in operations -
arithmetic operations return natural numbers and comparison operations return
boolean values):

a, b⇒ N
a+ b⇒ �a+ b�

a, b⇒ N
a− b⇒ �a− b�

a, b⇒ N
a× b⇒ �a× b�

a, b⇒ N b > 0

a÷ b⇒ �a÷ b�
a, b⇒ N b > 0

a mod b⇒ �a mod b�
t⇒ True

if t then u else s⇒ u
t⇒ False

if t then u else s⇒ s

a, b⇒ N
a < b⇒ �a < b�

a, b⇒ N
a ≤ b⇒ �a ≤ b�

a, b⇒ N
a > b⇒ �a > b�

a, b⇒ N
a ≥ b⇒ �a ≥ b�

These structural operational semantics are also implemented in the same
way as the operational semantics of each calculus - as a switch table.

61

5.5 The Test and Benchmark Programs
The following programs were created as unit tests to ensure that there is a cor-
respondence between the values of λ-calculus and the values of Closure Calculus.
As such, programs and data may be listed down in the pure λ-calculus form.
Conversions to Closure Calculus follows algorithm outlined in Chapter 4. Items
marked with a * are also used in benchmarks.

1. (λx.x)a

2. (λx.x y)a

3. (λx.λy.x)a

4. (λx.λy.y)a

5. (λx.λx.x)a

6. (λa.λa.a)a

7. SKK*

8. Addition with Scott Numerals *

9. fib - nth Fibonacci number (with δ-rules for natural numbers) *

10. primes - Prime Filter (with δ-rules of natural numbers)*

11. tak - Tak function (with δ-rules of natural numbers)*

A brief description of the programs and their reasoning follows.
The first six programs and input pairs were used as sanity checks to ensure

that each interpreter reduces the terms correctly as expected. Programs 1 to 4
are basic reduction exercises. Programs 5 and 6 test an interpreter’s ability to
handle confusion of names, either via meta-operations (pure λ-calculus) or the
calculus itself (Closure Calculus). Name clashes are further tested in programs
7 to 11, where repeat variable names are used frequently.

SKK is a program that is best expressed in combinatory logic: SKba, where
their combinators are written in the calculi. Addition is self-explanatory. It’s
a program that apply to the Scott encoded numerals. These are basic oper-
ations, to be contrasted against the more complex programs described below.
Benchmarking basic programs give a baseline to compare and understand the
results.

fib calculates the nth number of the Fibonacci sequence, where n is the
parameter denoting the input to the program. Support for a computer repres-
entation of natural numbers in form of 32-bit unsigned integer is provided by
means of extending the calculi with δ-rules. Fibonacci functions are used for
benchmarks because it tests the ability of an interpreter to handle large amounts
of closures.

62

primes is an implementation of the Sieve of Eratosthenes. Specifically, the
function used for benchmarking is the version taken directly from the Haskell
homepage (Haskell Language Authors 2014), translated into pure λ-calculus and
Closure Calculus. This program is good for benchmarking as it is a good proxy
for real-life programs.

tak is an implementation of the Tak function. The Tak function is tradi-
tionally used to benchmark handling of recursion (Knuth 1991, 1997).

A Note On The λ-encodings
The benchmarks involve data structures that have to be encoded into the lambda
calculus under test. Here a rationale is given for the choice.

Lists and tuples are encoded such that they are identified by their right folds.
The Church encoding, the Scott encoding, and the Parigot encoding of lists
were also considered. However, either choice would bias towards one calculus
or another. For example, comparing the performance of an interpreter using
four encoding styles (Church, Scott, Parigot, right folds), the pure λ-calculus
interpreter would perform better on the Church and Parigot encodings, while
the Closure Calculus interpreter would perform better on the Scott encoded list.
Thus, the “middle ground” was chosen as a fair comparison can then be had.
More on the encoding of lists is explored in Chapter 8.

While the encodings for lists and tuples offer many choices, the choices of
encoding a fix point combinator is somewhat limited.

For the pure λ-calculus benchmarks, the usual λ-encoding of the Y com-
binator, λp.(λx.f (xx))(λx.f (xx)) is used, while the Y2 combinator is used for
Closure Calculus. The pure λ-calculus equivalent of the Y2 combinator works
as well. However, it would present an unbalanced view of the results as it would
only work under one evaluation strategy. This is to say, the usual encoding of
the Y combinator yields fewer reduction steps than the pure λ-calculus version
of the Y2 combinator. It is tempting to make the fix point combinator a δ-term
with a corresponding δ-rule. This would not yield an interesting result, as most
of the reductions are due to reductions while recursing.

How the Benchmark Programs Are Derived
This section discusses how each of the benchmark programs came to be. The
running example for this section will be the fib program since it is the simplest.

First, the program is written in Haskell:

f i b : : (Num t , Num a , Eq a) => a −> t
f i b 0 = 0
f i b 1 = 1
f i b n = f i b (n−1) + f i b (n−2)
Observe that this function is recursive, but was written without the use of a
fixpoint operator. So this program is converted into one which explicitly uses a
fixpoint operator. Instead of using the built in version of fix, write y such that

63

it resembles the usual encoding of the Y combinator in λ-calculus (newtype Mu
is required to sidestep some type checking issues):

newtype Mu a = Mu (Mu a −> a)
y f = (\h −> h $ Mu h) (\x −> f . (\ (Mu g) −> g) x $ x)

f ibF : : (Eq a , Num a , Num t) => (a −> t) −> a −> t
f ibF rec n = i f n == 0 then 0

e l s e i f n == 1 then 1
e l s e r ec (n −1) + rec (n − 2)

f i b : : (Num t , Num a , Eq a) => a −> t
f i b = y f ibF

This is sufficiently close enough to the pure λ-calculus version:

Y := λf.(λx.f (xx))f.(λx.f (xx))

fibF := λrec.λn.if n = 0 then λx.0

else (if n = 1 then λx.1)

else λx.(rec ((n− 1) + (rec (n− 2)))

fib := (Y fibF)

Finally this is translated to Closure Calculus, with Y2 being previously
defined in Chapter 4:

fibF := λ[I]rec.λ[I, rec]n.if n = 0then λ[I]x.0

else (if(n = 1 then λ[I]x.1)

else λ[I, rec]x.rec@(n− 1) + (rec@(n− 2))))@x

fib := (Y2 fibF)

The other programs are translated in a similar fashion. The next section
presents the results and analysis.

64

Chapter 6

Closure Calculus is Simpler

This chapter compares Closure Calculus to the pure λ-calculus on their simpli-
city. This is done by first by comparing the relative simplicity of the lambda
calculi. Then this abstract notion is made concrete - a comparison of the im-
plementations of both calculi is then done. A brief introduction to the metrics
of complexity is first given, then it is shown that Closure Calculus is simpler to
implement.

6.1 On the Simplicity of the Lambda Calculi

(λx.t) u⇀ {u/x}t

if u 6∈ FV (t)∪ {x}

(a) Pure λ

xt ⇀ x@t

(s@t)u⇀ (s@t)@u

(λ[σ]x.t)u⇀ (σ :: x 7→ u) t

I u ⇀ u

(σ :: x 7→ t)x⇀ t , if z = x

(σ :: x 7→ t)z ⇀ σ z , if z 6= x

(σ :: x 7→ t) (u@v)⇀ ((σ :: x 7→ t)u) ((σ :: x 7→ t)v)

(σ :: x 7→ t) (λ[ρ]z.t)⇀λ[(σ :: x 7→ t)ρ]z.t

(σ :: x 7→ t) I ⇀ I

(σ :: x 7→ t) (ρ :: z 7→ u)⇀ (σ :: x 7→ t)ρ :: z 7→ (σ :: x 7→ t)v

(b) CCN

J t ⇀ J@t

Rtu ⇀ Rt@u

(r@t)u⇀ (r@t)@u

(λst)u⇀ (u, s)t

It ⇀ t

(u, s)J ⇀ u

(u, s)(Rt)⇀ st

(u, s)(r@t)⇀ (u, s)r((u, s)t)

(u, s)λr t ⇀ λ((u, s)r)t

(u, s)I ⇀ I

(u, s)(r, t)⇀ ((u, s)r, (u, s)t)

(c) CCDB

Figure 6.1.1: Reduction Rules

Figure 6.1.1 collates the reduction rules of the pure λ-calculus, CCN and
CCDB. At first blush, the reduction rules of the pure λ-calculus is far simpler

65

than that of either flavours of Closure Calculus. It is true and obvious that 1
rule is fewer than 10 or 11 rules. A claim to be made here is that the reduction
rules of CCN and CCDB are in fact simpler than that of the pure λ-calculus.
This is a contentious claim, and we must proceed with care on the reasoning,
laid out below.

Observe that the side condition - “if x 6∈ FV (t) ∪ {x}” - hides much of the
complexity of the pure λ-calculus. When viewed from an implementation point
of view, the reduction rules of the pure λ-calculus appears incomplete, and offers
much latitude to the implementor.

Recall that the pure λ-calculus was introduced in Chapter 3 with three
rewrite rules, one of which is the β reduction rule. When a β-reduction is to
occur, a check is made to see if there would be a name clash. If there is, then
an alpha conversion needs to be applied on the bound variables. This process
of determining if two terms are α-equivalent is quadratic(Morazán and Schultz
2008). Mechanical reasoning of when to apply the alpha conversion is also
quadratic.

A common method to ensure that the side condition is fulfilled is through
applying alpha conversion on all bound variables on all subterms before β-
reduction ensues, so (λx.(λx.x)x) (λx.x) becomes (λa.(λb.b)a) (λc.c) before re-
duction occurs. This method is due to Barendregt (1985) who introduced his
variable convention to ensure clarity. While this simplifies the mechanised reas-
oning (i.e it is applied universally to all term so that the term undergoing re-
duction has only fresh variables), the fact remains that a quadratic process is
still required for testing of α-equivalence. Furthermore in implementing this,
a like-for-like analysis with Closure Calculus is no longer possible as Closure
Calculus requires no additional phases.

Another common solution to the meta-theory problem follows the plan out-
lined in the previous paragraph. However, instead of alpha conversion, terms
are converted into terms of the pure λ-calculus with de Bruijn indices. This
conversion process makes reductions much easier. However, this complicates
the implementation as the pure λ-calculus with de Bruijn indices brings its own
meta-theory.

There exists other methods to reduce or remove the required meta-theory,
such as using higher order abstraction syntax. However, those only serve to
complicate the implementations. The abundance of choice in implementing
the meta-operations, combined with the underspecificity of the meta-operations
often lead to incorrect implementations.

All this and we still have not considered the data structures and algorithms
required to implement the side condition. For example, the implementor may
be obliged to keep track of which variables are bound when traversing a term,
in order to find out which variable may be replaced by a fresh variable. This
requires data structures that are more complicated than the λ-terms themselves!
A complete description of the pure λ-calculus that takes into account the sub-
tleties of the implementation details would undoubtedly be quite complex. The
pursuit of such a complete description has been the mainstay of academia for
years.

66

By contrast, the side conditions in the reduction rules of Closure Calculus are
either trivial (variable comparison) or non-existent. The reduction rules may be
implemented in a straightforwards fashion, leaving no choice of implementation
for meta-operations. There is no need to keep track of free or bound variables.
The result is an implementation that is far simpler than an implementation of
the pure λ-calculus.

It is in this sense that the reduction rules of Closure Calculus is said to be
simpler than that of the pure λ-calculus.

6.2 Complexity Metrics
The first result of this report is shown by comparing the complexity of an
interpreter for Closure Calculus compared to an interpreter for the pure λ-
Calculus. The most common measure of complexity is the notion of cyclomatic
complexity (McCabe 1976).

Cyclomatic complexity is simply a count of linearly independent paths a
program may take. Cyclomatic complexity is highly dependent on the control
flow of a program. The more different paths a program may take, the more
complex it is.

Another complexity metric that is quite commonly used is the COCOMO
metrics (Boehm 1984). It is a model of estimating monetary costs, effort as
measured by time requirements and resource as measured by human resources.
Accordingly, the costs of software development is proportional to its complexity,
thus by estimating the costs, one may estimate the complexity of a program.
The latest model is derived from statistical regressions on 161 software devel-
opment projects in the early 2000s. The basic COCOMO metrics are the only
one suitable for use in the context of this work. It provides a rough order of
magnitude estimates of software costs, which is enough.

Last, due to the use of an imperative programming language with few ad-
vanced features, we may rely on induction on the lines of code in the program.
The longer a program is, the more complex it is.

The complexity metrics are calculated using an open source software called
scc (Boyter 2018). scc automatically calculates these metrics and are used by
corporations like Intel to manage complexity.

6.3 Closure Calculus Is Simpler To Implement
We may use the traditional measures of software complexity precisely because
the programming language used is an imperative, non-functional programming
language that does not obscure complexity. Thus the syntactic complexity of
the program is proportional to the actual complexity of the program. Note that
there is a combinatorial explosion of implementation choices when it comes to
the pure λ-calculus. The implementation chosen for this report is one of the
simplest possible implementation.

67

The following table presents the complexity metrics of the interpreters, fol-
lowing the complexity metrics explained in the previous chapter. The structure
of the source code is laid out in separate files such that it is easier to include or
exclude files when accounting for specific metrics of complexities. Explanations
of the observations follow.

Interpreter

Lines of

Code

(Total)

Meta

Theory

LoC

Cyclomatic

Complexity

(Total)

Meta

Theory

CC

Cost Time People

CBN 226 116 30 17 $21,119 3.5 months 0.7

CBV 227 116 30 17 $21,147 3.5 months 0.7

Norm 231 116 30 17 $21,259 3.5 months 0.7

CCN 159 4 5 0 $18,325 2.9 months 0.5

CCDB 155 0 5 0 $18,325 2.9 months 0.5

It is quite obvious that an interpreter for Closure Calculus, regardless of
flavour, is simpler than an interpreter for the pure λ-calculus. This is true
across all the metrics.

According to the COCOMO metrics, it would take less time, less money
and fewer people to build an interpreter for either flavour of Closure Calculus
than any flavour of the pure λ-calculus. This is attributable to the cyclomatic
complexity and the lines of code for each interpreter, which we discuss next.

The pure λ-calculus interpreters require around 230 lines of code to im-
plement. Further analysis indicates that more than half those lines (116) are
attributable to meta-theory requirements. The cyclomatic complexities may
also be split into two separate metrics. Again, the cyclomatic complexities of
the meta-theory component (17) dominates the cyclomatic complexities of the
interpreters (13).

The Closure Calculus interpreters require fewer lines in total to implement.
However, just comparing interpreters without the meta-theory, it can be seen
that the pure λ-calculus interpreters take fewer lines (110-115 lines vs 155-
159 lines) to implement. This ratio is similar to the ratios of lines of code
found in the Haskell and OCaml implementations, which have meta-theoretic
considerations obscured. However it would be dishonest to conclude that the
pure λ-calculus is simpler. Without the meta-theory considerations the pure
λ-calculus interpreters would simply not work correctly!

However the most surprising of the metrics is if we compare the cyclomatic
complexity of only the interpreters for the pure λ-calculus and the cyclomatic
complexity of the interpreters of Closure Calculus. Further analysis into this
reveals that much of the complexity is attributable to the α-conversion rule.
The α-conversion rule requires nested conditionals in order to correctly perform
the meta-operation of substitution. This leads to a combinatorial increase in

68

code paths, leading to higher cyclomatic complexity, which is a measure of how
many paths a program may take.

There is debate whether to consider the α-conversion rule to be a meta-
theory. If so, then the cyclomatic complexity of all the interpreters modulo
meta-theory is 5. However, as most literature on the pure λ-calculus considers
α-conversion to be part of the rewrite rules, this report treats it as a rewrite
rule as well.

69

Chapter 7

Closure Calculus Terms
Reduce to Normal Forms
Faster

This chapter considers the comparison of the Closure Calculus interpreters with
the pure λ-calculus interpreters. The comparison is done on the performance
on reductions to normal form. First, an overview of the performance metrics is
given. This is followed by a listing of benchmark programs and the results of
a count of operations and meta operations. Then results on time and memory
usage for the interpreters are given. Finally, this chapter closes with further
analyses on the two sets of results, showing that the lack of meta-operations is
the cause of the superior performance of the Closure Calculus interpreter.

7.1 Performance Metrics
Performance of the calculi is considered on three levels: the number of inter-
preter reduction operations, the time taken per operation and memory statist-
ics. The tools used are built in to the Go programming language itself. The
benchmark tools have been battle tested in large corporations. First I give a
description of interpreter reduction operations, followed by a description of how
time per operation is calculated, then a description of the memory statistics is
given.

Interpreter reduction operation counts is straightforwards: it’s simply a
count of operations per reduction. However, a finer grained breakdown is given.
The argument that is made is that the pure λ-calculus has fewer reductions in
total, but has more meta-operations. These meta-operations take up computing
resources too! Thus we must separately count the meta-operations alongside the
number of reductions. Closure calculus has many more reduction rules than the
pure λ-calculus, but little to no meta-operations required.

70

Given the operational differences between an interpreter of the pure λ-
calculus and Closure Calculus, what might we say about the absolute time
taken to compute a function? This is why absolute time measures need to also
be taken into account.

When the program is compiled with the benchmarking turned on, each
benchmark function (called an “operation”) has an associated counter. Every
time a function is called, the counter is incremented. An overall statistics of
time taken per operation is the computed. The less time it takes to complete
an operation, the faster it is.

Further, we may also instrument the operation with statistics on memory.
Two statistics are provided for memory: amount of memory per operation,
and the number of allocations required per operation. Performance is usually
inversely proportional to these statistics.

Last, we may profile the program to figure out which exact component of an
operation is taking the most computational resources. This would be useful in
explaining the benefits and deficits of either calculi.

7.2 Closure Calculus Has Fewer Meta Operations
The previous chapter sets up the notion of performance metrics for comparison
between the two calculi. One of the performance metrics is the operations count.
To that end the interpreters have an optional flag that counts the reduction
operations. While the previous chapter lists many tests to be performed, this
section catalogues three of the simpler tests which are easily verifiable with pen
and paper in order to facilitate discussions.

Given that Closure Calculus is aggressively normalising, and that these pro-
grams are relatively well behaved, the normal order interpreter for the pure
λ-calculus is used. The following table presents the results. Explanations of the
tests and observations follow.

71

Program and input Interpreter Redu-

ctions

Var

Eq

Subs Fresh Capture

(λx.xy)u Norm 1 2 3 0 0

(λ[I]x.x@y)u CCN 6 2 0 0 0

(λI(0@1))2 CCDB 6 0 0 0 0

(λx.λy.x)u Norm 1 4 2 1 1

(λ[I]x.λ[I,x]y.x)u CCN 5 1 0 0 0

(λx.λy.x)y Norm 1 7 2 2 2

(λ[I]x.λ[I,x]y.x)y CCN 5 1 0 0 0

(λIλ(0, I)1)2 CCDB 5 0 0 0 0

SKu v Norm 5 46 31 14 10

SKu v CCN 33 14 0 0 0

SK2,3 CCDB 33 0 0 0 0

Table 7.1: Reduction results for various program in λ-Calculus

How the operations are counted is exposited in the following example, using
the first program-input pair as the term to be reduced.

Example. Counting the reductions and meta-operations for (λx.xy)u, λ[I]x.x@y
and λI(0@1) 2 respectively. Reduction counts will be in red, substitution counts
will be in blue and variable equality will be in green. The counts are placed
in running with the reduction steps. {u/x}(xy) 1 0 0 reads: “after the reduc-
tion that yields the result {u/x}(xy), 1 reduction, 0 substitutions and 0 variable
equality checks would have been done”. The following table shows the counts
for each reduction step for each of the calculi.

Norm CCN CCDB

(λx.xy)u

→ {u/x}(xy) 1 0 0

→ ({u/x}x {u/x}y) 1 1 0

→ (uy) 1 3 2

(λ[I]x.x@y)u

→ (I :: x 7→u)(x@y) 1 0 0

→ ((I :: x 7→u)x)((I :: x 7→u)y) 2 0 0

→u((I :: x 7→u)y) 3 0 0

→u(I y) 4 0 1

→uy 5 0 2

→u@y 6 0 2

(λI(0@1))2

→ (2,I)(0@1) 1 0 0

→ (2,I)0(2,I)1 2 0 0

→ 2(2,I)0 3 0 0

→ 2(I 0) 4 0 0

→ 20 5 0 0

→ 2@0 6 0 0

Fresh and Capture are additional operations that are also counted but not
explained in the example above. Briefly, Fresh indicates the count of how many
times a fresh variable is required in the road to reducing to a normal form.
Capture indicates how many times a variable capture check was performed.
Fresh and Capture are overlapping metrics - the counts may overlap with other
counts of operations. Care must be taken when reasoning around aggregates of
the metrics. However, substitutions and variable equality are non-overlapping
metrics. These will be the main tools of reasoning.

72

The first set of examples is used to show a basic overview of how the counts
of operations and meta-operations differ between the calculi.

The second set of examples, (λx.λy.x)u, (λx.λy.x)y and its CCN equivalent
results in the same equivalent NF but one application requires a more meta-
operational checks to be performed while the other does not. Given that there
can be no confusion in the unnamed version of Closure Calculus, only one the
metrics of example, (λIλ(0, I)1) 2 is shown.

The last set of examples is more indicative of real-life programs that the
two toy sets of examples above. SKuv was chosen because it is small enough
for the reader to verify manually while still showing a large difference in the
performance of the pure λ-calculus and Closure Calculus.

Having fully introduced all the metrics and the classes of examples, let’s
proceed with the analysis of the reduction characteristics of the various calculi.

Overall the observation to be made is that the pure λ-calculus requires fewer
dramatically reduction operations but requires more meta-operations. However,
with the exception of CCDB, observe that if we deem reductions and substitu-
tions to have the same costs, the sum of costs of operations and substitution is
roughly of the same magnitude. For example, for the first set of tests, the sum
of operations is 4, 6, 6 for Norm, CCN, and CCDB respectively. For the last set
of tests, SKuv the sum of operations is 36, 33, 33 for Norm, CCN and CCDB
respectively.

7.3 Closure Calculus is Faster; Uses Less Memory
The previous section compares the number of operations and meta-operations
each calculi. This section compares the performance of the calculi in terms of
absolute time. This is done by benchmarking program-input pairs, listed in
the previous chapter. Benchmarking toy examples aren’t particularly useful,
so the programs that are benchmarked here are more indicative of real world
workloads. Only SKK is retained from the previous section as it gives insights
to the impact of meta-operations to performance.

The following table shows the results of the benchmarks. Only CCN and
CBN are compared. Descriptions of the metrics and results follow.

73

Benchmark
Ops (ns/op) Memory (B/Op) Allocs/Op

CCN CBN CCN CBN CCN CBN

SKK 943 1792 22 128 0 9

Addition

(Scott

Numerals)

3218 34728 176 7067 0 265

Ops (ms/op) Memory (MB/Op) Allocs/Op

fib 20 185.76 2547.04 132.62 373.71 0 12762168

primes 30 172.85 4408.15 150.28 677.61 0 9176241

tak 28 12 7 2362.17 12711.02* 686.96 1042.26* 2 N/A

These benchmarks are done with a MacBook with an Intel Core i5 CPU @
3.1GHz; 32GiB of RAM running on MacOS 10.13.6. The Go version used to
compile the interpreter is go1.10 darwin/amd64. A note on the tak 28 12 7
benchmark: A rudimentary garbage collector had to be implemented for the
pure λ-calculus interpreter, otherwise the benchmark would take too much
memory and wouldn’t complete. Thus the results have to be treated with care.

The metrics that are being benchmarked are Ops, Memory and Allocs.
Ops is the average time taken per operation. An operation is the totality

of functions under benchmark. In the benchmarks, the interpreter’s Interpret
method is the function under benchmark. Time taken to prepare the program
and inputs is not taken into account. A concrete example would be that the
program and input SKb a, called SKK in the benchmarks table, took on average
943 nano seconds to complete when represented as Closure Calculus. The equi-
valent representation in the pure λ-calculus, interpreted by a CBN interpreter
took on average 1792 nanoseconds to complete.

Memory is the amount of memory used by the program for the duration of
the operation. Returning to the SKK benchmark, we see that when represented
as Closure Calculus, it uses a mere 22 bytes per operation whereas it uses 128
bytes per operation for the CBN interpreter.

Last we consider Allocs. Allocs counts the number of times the Go runtime
system has to allocate memory per operation. The runtime may need to allocate
memory in order to facilitate dynamic data types such as slices, whose sizes are
unknown until runtime. The CCN interpreter rarely needs to allocate memory.
However, we can expect all pure λ-calculus interpreters to have some amount
of allocations. This is because lists of free variables have to be determined at
runtime in order to perform a β-reduction correctly.

The numbers speak for themselves. The CCN interpreter is a magnitude
faster than the CBN interpreter on average. The CCN interpreter uses less
memory than the CBN interpreter.

The hypothesis is that the meta-operations do not have the same costs as
the operations. The next section confirms this.

74

7.4 Further Analysis
We may do further analysis by instrumenting the program with the profiling
tools that come with the language. Reviewing the profiles, we find the CBN λ-
calculus interpreter, spends most of its time performing substitution. In partic-
ular, capture avoiding substitution has been shown to be particularly expensive.
For the naive Closure Calculus interpreter, most of the time is spent in reduc-
tion functions. Figures 7.4.1 and 7.4.2 shows the profiling report for the SKK
benchmark. Despite being a simple program, the profile showing a record of
what is happening at runtime is illuminating.

Showing top 10 nodes out of 91
flat flat% sum% cum cum%

290ms 14.87% 14.87% 1390ms 71.28% github.com/chewxy/cccombos/lc/eagerO1.(*Interpreter).substitute
150ms 7.69% 22.56% 150ms 7.69% github.com/chewxy/cccombos/internal/termso1.(*Manager).Free
140ms 7.18% 29.74% 1180ms 60.51% github.com/chewxy/cccombos/lc/eagerO1.(*Interpreter).substituteUnderLambda
130ms 6.67% 36.41% 170ms 8.72% github.com/chewxy/cccombos/internal/termso1.(*Manager).binop
110ms 5.64% 42.05% 230ms 11.79% github.com/chewxy/cccombos/internal/termso1.(*Manager).App
110ms 5.64% 47.69% 220ms 11.28% runtime.mallocgc
100ms 5.13% 52.82% 260ms 13.33% github.com/chewxy/cccombos/internal/termso1.(*Manager).Cleanup
80ms 4.10% 56.92% 90ms 4.62% github.com/chewxy/cccombos/internal/termso1.(*Manager).NameOf
60ms 3.08% 63.59% 60ms 3.08% memeqbody
50ms 2.56% 66.15% 50ms 2.56% runtime.memequal

Figure 7.4.1: Profiler Reports for the CBN λ-calculus interpreter

Showing top 10 nodes out of 23
flat flat% sum% cum cum%

510ms 17.11% 17.11% 530ms 17.79% github.com/chewxy/cccombos/internal/termso1.(*Manager).Free
420ms 14.09% 31.21% 1450ms 48.66% github.com/chewxy/cccombos/cc/naiveO1.(*Interpreter).reduceAppSigmaX
390ms 13.09% 44.30% 520ms 17.45% github.com/chewxy/cccombos/internal/termso1.(*Manager).binop
200ms 6.71% 51.01% 440ms 14.77% github.com/chewxy/cccombos/internal/termso1.(*Manager).Sigma
190ms 6.38% 57.38% 200ms 6.71% github.com/chewxy/cccombos/internal/termso1.(*Manager).Get
180ms 6.04% 63.42% 1750ms 58.72% github.com/chewxy/cccombos/cc/naiveO1.(*Interpreter).reduceApp
140ms 4.70% 68.12% 580ms 19.46% github.com/chewxy/cccombos/internal/termso1.(*Manager).Cleanup
130ms 4.36% 72.48% 130ms 4.36% github.com/chewxy/cccombos/internal/termso1.(*Manager).alloc
120ms 4.03% 76.51% 160ms 5.37% github.com/chewxy/cccombos/internal/termso1.(*Manager).NameOf
110ms 3.69% 80.20% 200ms 6.71% github.com/chewxy/cccombos/internal/termso1.(*Manager).Closure

Figure 7.4.2: Profiler reports for the CCN interpreter

The reports show the top 10 functions that spend most time executing. It is
sorted by the total time spent executing a function. This is misleadingly called
flat. The other metric, cum, denotes the total cumulative time spent in the
function. This includes the time spent when control has left the function. For
example, allocating a slice may trigger a garbage collection cycle. That time is
included in the cumulative time, but not the flat time. Both views are important
in understanding the performance characteristics of a program.

In both profile reports, the functions are highlighted according to the use case
of the function. Functions highlighted yellow are functions directly involved in
reduction of terms. Functions highlighted red are functions related to the meta

75

theory operations. Functions highlighted blue are supporting functions needed
by the runtime of each individual calculus. Last, functions highlighted grey are
functions from the Go runtime.

First observation that can be made is that there are no functions from the
Go runtime in the report for the CCN interpreter. That the functions from the
Go runtime show up in the profile for the CBN interpreter is telling. Closure
calculus has no requirement for us to track free variables. Hence there is no
need to acquire and pass around sets of free variables. On the other hand, the
pure λ-calculus requires us to keep track of sets of free variables. These sets
are implemented as slices in Go, which, due to its dynamic nature, requires
assistance from the garbage collector from time to time. runtime.mallocgc is
precisely the function that is called when dealing with dynamically sized sets of
free variables.

Upon further inspection, we see that this train of thinking is correct. If the
profiles are sorted by cumulative time spent, then we see fv and fresh being in
the top 10:

Showing top 10 nodes out of 91
flat flat% sum% cum cum%

0.02s 1.03% 2.56% 1.47s 75.38% github.com/chewxy/cccombos/lc/eagerO1.(*Interpreter).Interpret
0.03s 1.54% 4.10% 1.45s 74.36% github.com/chewxy/cccombos/lc/eagerO1.(*Interpreter).eval
0.01s 0.51% 4.62% 1.41s 72.31% github.com/chewxy/cccombos/lc/eagerO1.(*Interpreter).beta
0.29s 14.87% 19.49% 1.39s 71.28% github.com/chewxy/cccombos/lc/eagerO1.(*Interpreter).substitute
0.14s 7.18% 26.67% 1.18s 60.51% github.com/chewxy/cccombos/lc/eagerO1.(*Interpreter).substituteUnderLambda
0.10s 5.13% 31.79% 0.26s 13.33% github.com/chewxy/cccombos/internal/termso1.(*Manager).Cleanup
0.04s 2.05% 33.85% 0.26s 13.33% github.com/chewxy/cccombos/lc/eagerO1.(*Interpreter).fv
0.11s 5.64% 39.49% 0.23s 11.79% github.com/chewxy/cccombos/internal/termso1.(*Manager).App
0.11s 5.64% 45.13% 0.22s 11.28% runtime.mallocgc

0 0% 45.13% 0.18s 9.23% github.com/chewxy/cccombos/lc/eagerO1.(*Interpreter).fresh

Figure 7.4.3: Profiler reports for the CBN interpreter, sorted by cumulative
time spent

By contrast, the cumulative profile for CCN is as follows:

Showing top 10 nodes out of 23
flat flat% sum% cum cum%
80ms 2.66% 4.32% 1940ms 64.45% github.com/chewxy/cccombos/cc/naiveO1.(*Interpreter).Interpret

190ms 6.31% 10.63% 1780ms 59.14% github.com/chewxy/cccombos/cc/naiveO1.(*Interpreter).reduceApp
440ms 14.62% 25.25% 1520ms 50.50% github.com/chewxy/cccombos/cc/naiveO1.(*Interpreter).reduceAppSigmaX
140ms 6.31% 31.56% 750ms 24.92% github.com/chewxy/cccombos/internal/termso1.(*Manager).Cleanup
530ms 17.61% 49.17% 580ms 19.27% github.com/chewxy/cccombos/internal/termso1.(*Manager).Free
160ms 5.32% 54.49% 410ms 13.62% github.com/chewxy/cccombos/internal/termso1.(*Manager).Sigma
310ms 10.30% 64.78% 410ms 13.62% github.com/chewxy/cccombos/internal/termso1.(*Manager).binop
90ms 2.99% 67.77% 260ms 8.64% github.com/chewxy/cccombos/cc/naiveO1.(*Interpreter).A

220ms 7.31% 75.08% 230ms 7.64% github.com/chewxy/cccombos/internal/termso1.(*Manager).NameOf
160ms 5.32% 80.40% 210ms 6.98% github.com/chewxy/cccombos/internal/termso1.(*Manager).Get

Figure 7.4.4: Profiler reports for the CCN interpreter, sorted by cumulative
time spent

These patterns in both reports are as expected. The majority of the cumulat-

76

ive time is spent on reducing terms. However, observe that the total time spent
in the substitute function in the CBN profile (highlighted in green). Other
than the runtime support functions, the substitute function is where the pro-
gram spends the most time on. This, coupled with the fact that memeqbody and
runtime.memequal shows up in the top 10 functions where the program spends
the most time in confirms that it is passing around a set of free variables that
is the cause of the slow performance when compared to the CCN interpreter.

When the same kind of profiling is done on more complicated programs,
similar patterns show up. This allows us to come to a conclusion that this is
congruent with the intuition that the simplicity of Closure Calculus leads to a
more performant programming language.

This has some implications on implementing a programming language. The
next part of this report addresses that.

77

Part III

Implications

78

Chapter 8

Interesting Artefacts of
Closure Calculus

The nature of Closure Calculus upends some familiar understandings in pure
λ-calculus. This chapter discusses with some such findings. They may be useful
for programming language implementors.

First, a discussion of Closure Calculus and natural numbers is given. En-
coding of natural numbers in the pure λ-calculus are not analogous1 in Closure
Calculus.

Then an introduction to List and Pair is given. This is a precursor to the next
section where the Church-encoded Pred, previously deemed unimplementable is
defined.

The sections that follow then gives more concrete advice to programming
language implementors. These are artefacts that would sit well in the toolbox
of programming language implementors.

Evaluation functions with local variables are introduced. An example of
simulating Combinatory Logic in Closure Calculus is given.

This is followed by an example of functions that extract the body of an
abstraction. Last, a quick guide is given on how using the Identity operator in
place of an identity function would yield fewer reduction steps.

8.1 Natural Numbers
In general, Closure Calculus lends itself really well to encodings that embed
values.

What I mean by “embed values” can be readily seen in Figure 8.1.1. Ob-
serve that in the Scott and Parigot encodings of natural numbers, the underlined
terms in the bodies are numbers are “embedded” whole in the term. The term

1defined in Section 5.1 of Chapter 5

79

0 := λf.λx.x

Succ := λn.λf.λx.f (nf x)

1 := Succ 0

→∗ λf.λx.f x

2 := Succ 1

→∗ λf.λx.f (f x)

...

(a) Church Encoding

0 := λf.λx.f

Succ := λn.λf.λx.xn

1 := Succ 0

→∗ λf.λx.x0

2 := Succ 1

→∗ λf.λx.x1

...

(b) Scott Encoding

0 := λf.λx.x

Succ := λn.λf.λx.f n (nf a)

1 := Succ 0

→∗ λf.λx.f 0x

2 := Succ 1

→∗ λf.λx.f 1 (f 0x)

...

(c) Parigot encoding

Figure 8.1.1: Number Encodings in the pure λ-calculus

representing 2 contains the term representing 1. The term representing 1 con-
tains the term representing 0. This cannot be seen in the Church encoding.
Instead, the Church encoding may be viewed as an iterator that generates new
numbers.

Like the pure λ-calculus, Closure Calculus has no notion of natural numbers.
Instead, natural numbers may be encoded in the terms of Closure Calculus.

Using the Scott encoding, the Peano axioms may be stated as such:

0 := λ[I]f.λ[I :: f 7→ f]x.f

Succ := λ[I]n.λ[I :: n 7→ n]f.λ[I :: n 7→ n :: f 7→ f]x.x@n

The natural numbers may then be inductively defined:

80

1 := Succ 0

= (λ[I]n.λ[I :: n 7→ n]f.λ[I :: n 7→ n :: f 7→ f]x.x@n) 0

→ λ[I :: n 7→ 0]f.λ[I :: n 7→ n :: f 7→ f]x.x@n

2 := Succ 1

= (λ[I]n.λ[I :: n 7→ n]f.λ[I :: n 7→ n :: f 7→ f]x.x@n) 1

→ λ[I :: n 7→ 1]f.λ[I :: n 7→ n :: f 7→ f]x.x@n

...

These results are indeed strange, especially when one is familiar with the
λ-calculus version of the Scott numerals.

Running the resulting terms through the conversion process as described in
the previous section yields different terms from what is expected:

�0λ� = �λf.λx.f�
→∗ λ[I]f.λ[I :: f 7→ f]x.f

≡ 0cc

�1λ� = �λf.λx.x0λ�
→∗ λ[I]f.λ[I :: f 7→ f]x.x@0cc

6≡ 1cc

�2λ� = �λf.λx.x1λ�
→∗ λ[I]f.λ[I :: f 7→ f]x.x@�1λ�
6≡ 2cc

...

Scott encoded numbers in the pure λ-calculus are not analogous in Closure
Calculus. What to make of this? Here, we should follow the definition of a
natural number as defined by Peano. The number 1 is defined as the succession
of 0. The result of applying the successor function to 0 is λ[I :: n 7→ 0]f.λ[I ::
n 7→ n :: f 7→ f]x.x@n. Therefore we call this term the canonical representation
of a Scott encoded number 1.

It is important to observe that the canonical representation is but a rep-
resentation. Numbers are represented differently in different number systems -
the most common of which is the positional base-10 number system that we’re
familiar with. In λ-calculus itself, the common encoding of natural numbers
are the Church numerals. Alternate encodings, like the Scott encoding, or the
Parigot encoding exists. They represent the same abstract notion of numbers
in different terms.

Closure Calculus clarifies the difference between encoding and representa-
tion. Different, non-equivalent terms may be used to represent the same num-
ber under the same encoding scheme. Using a different term λ[I]f.λ[I :: f 7→

81

f]x.x@0 or indeed λ[I]f.λ[I]x.x@0 as a Scott-encoded number 1 does not break
any functions that expects a Scott-encoded number.

More importantly, note that the three terms are all in normal form:

λ[I :: n 7→ 0]f.λ[I :: n 7→ n :: f 7→ f]x.x@n

λ[I]f.λ[I :: f 7→ f]x.x@0

λ[I]f.λ[I]x.x@0

Are there benefits in separating the concept of encoding and representation?
We may think of this as a stepping stone to a constructing a notion of semantic
equality of terms. Equally, we may consider then that Closure Calculus is
capable of maintaining multiple representations of the same term. This allows
programming language implementors to choose the best representation for the
given task.

82

8.2 List and Pair
Encodings of lists are fixtures of introductory lambda calculus courses. A list
of numbers, [1,2,3] is also commonly written Cons 1 (Cons 2 (Cons 3 Nil))),
where Cons and Nil are the constructors of a list data type. The pure λ-calclus
approach require that Cons and Nil be meta-variables, standing in for some
λ-term. The usual accounts of list encodings can be faithfully translated to
Closure Calculus. A brief overview is presented in Figure 8.2.1.

selFst := λ[I]x.λ[I :: x 7→ x]y.x

selSnd := λ[I]x.λ[I :: x 7→ x]y.y

True := selFst

False := selSnd

falseGen := λ[I]f.f@False

(a) Common Terms

Pair := λ[I]x.λ[I, x]y.λ[I, x, y]f.f@x@y

fst := λ[I]f.f@selFst

snd := λ[I]f.f@selSnd

Nil := λ[I]x.Pair@tTrue@True@x

Cons := λ[I]x.λ[I, x]xs.Pair@False@(Pair@x@xs)

head := λ[I]x.fst@(snd@x)

tail := λ[I]x.snd@(snd@x)

isNil := fst

(b) Church-encoded list

Nil := λ[I]f.λ[I, f]x.f

Cons := λ[I]x.λ[I, x]xs.λ[I, x, xs]f.λ[I, x, xs, f]g.g@x@xs

head := λ[I]xs.xs@Nil@(λ[I]x.λ[I, x]xs.x)

tail := λ[I]xs.xs@Nil@(λ[I]x.λ[I, x]xs.xs)

isNil := λ[I]xs.xs@True@falseGen

(c) Scott Encoded list

Figure 8.2.1: List and Pairs Encodings

The list and pair encodings are rather straightforwards. It must be rather
strange to see it included in a chapter on the interesting artefacts of Closure
Calculus. Nonetheless, they are introduced here as the notion of lists and pairs
will help with the later sections. In particular, a Church-encoded pred can be
derived using the Church pair. Further, explorations on encoding schemes yield
some interesting results, which are good to juxtapose against more traditional
encodings.

83

8.3 On The Church-Encoded pred

In the original paper outlining Closure Calculus, there was a claim made that
the predecessor function for Church encoded numbers may not be implemented
in Closure Calculus for the want of reduction under the λ. However, there is
another way to define pred without first having to undergo anaesthesia at the
dentist.

We start by following the traditional thinking around reversible computing:
we may represent the result as a pair of values - the left projection of the pair
encodes the history or environment of function that was applied while the right
projection gives the resulting value. pred is the dual to succ. Hence to encode
the history of applying succ, we merely need to store the last number. We write
the pair as (prev, curr).

Define a function bind1 := λ[I]p.Pair@(snd@p)@(succ@(snd@p)). This
function takes a pair p and observes the right projection, which we have defined
as curr. Then it creates a new pair using the Pair function, only now curr
is placed in the left projection and the successor of curr is placed in the right
projection. It should be noted that this is a matter of definition. If we had
defined the pair to be (curr, prev) then the orders would be reversed, and fst
would be used in place of snd in bind12.

Next, define unit0 := (Pair00). unit0 is a pair of two zeroes, the unit value
of the function we’re interested in. Observe that unit0 is a standard application,
not a tagged application. It is the resulting NF that we’re interested in. In full
it’s written λ[I :: x 7→ 0 :: y 7→ 0]f.f@x@y.

Thus pred can then be defined as λ[I]n.fst@(n@bind1@unit0). This defin-
ition of pred takes advantage of the fact that Church numerals are iterators -
an encoding of a natural number n simply means apply a function f n times.
Examples follow the definition of common terms.

0 := λ[I]f.λ[I, f]x.x

succ := λ[I]n.λ[I, n]f.λ[I, n, f]x.f@(n@f@x)

1 := succ 0

→∗ λ[I :: n 7→ 0]f.λ[I, n, f]x.f@(n@f@x)

2 := succ 1

→∗ λ[I :: n 7→ 1]f.λ[I, n, f]x.f@(n@f@x)

...

2The name curious name bind1 is derived from the usual signature of a monadic bind ala
Haskell, where the second argument is a function with a signature (a -> m b)

84

Example. pred 1 ≡ pred (succ 0) gives the following reduction sequence:

pred (succ 0) →∗ fst ((λ[I :: n 7→ 0]f.λ[I, n, f]x.f@(n@f@x)) bind1 unit0)

→∗ fst ((λ[I :: n 7→ 0 :: f 7→ bind1]x.f@(n@f@x)) unit0))

→∗ fst ((I :: n 7→ 0 :: f 7→ bind1 :: x 7→ unit0)(f@(n@f@x))

→∗ fst (bind1 (0 bind1 unit0))

≡ fst (bind1 ((λ[I]f.λ[I, f]x.x) bind1 unit0))

→∗ fst (bind1 ((λ[I :: f 7→ bind1]x.x) unit0))

→∗ fst (bind1 unit0)

→∗ λ[I]f.λ[I, f]x.x

≡ 0

Example. pred 2 ≡ pred (succ 1) gives the following reduction sequence:

pred (succ 1) →∗ fst ((λ[I :: n 7→ 1]f.λ[I, n, f]x.f@(n@f@x)) bind1 unit0)

→∗ fst ((λ[I :: n 7→ 1 :: f 7→ bind1]x.f@(n@f@x)) unit0))

→∗ fst ((I :: n 7→ 1 :: f 7→ bind1 :: x 7→ unit0)(f@(n@f@x))

→∗ fst (bind1 (1 bind1 unit0))

≡ fst (bind1 ((λ[I :: n 7→ 0]f.λ[I, n, f]x.f@(n@f@x)) bind1 unit0))

→∗ fst (bind1 ((λ[I :: n 7→ 0 :: f 7→ bind1]x.f@(n@f@x)) unit0))

→∗ fst (bind1 ((I :: n 7→ 0 :: f 7→ bind1 :: x 7→ unit0)(f@(n@f@x))))

→∗ fst (bind1 (bind1 (0 bind1 unit0)))

→∗ fst (bind1 (bind1 unit0))

≡ fst (λ[I :: x 7→ 1 :: y 7→ λ[I :: n 7→ 1]f.λ[I, n, f]x.f@(n@f@x)]f.f@x@y)

→∗ λ[I :: n 7→ 0]f.λ[I, n, f]x.f@(n@f@x)

≡ 1

85

8.4 Evaluation Functions With Local Variables
In Closure Calculus it is easy to clearly define evaluation functions with local
variables. A usual evaluation function has this form:

λ
Env

[ρ] x.
Locals

(σ :: y 7→ t) @
B

x

Here, we may think of the evaluation function as having three components
- the derived Env, local variables Locals and the body B. The use of Locals
makes defining an evaluation function easy. The following subsection shows an
example of applying this concept to give an alternative simulation of Combin-
atory Logic in Closure Calculus.

Encoding a TRS in Closure Calculus
The combinatory logic (CL) is a first order TRS. The signature Σ of CL are
given as such:

Σ = {S,K, I,App}

Observe that unlike λ-calculus, there is no notion of term-level variables.
The rules are given as such:

App(App(App(S x) y) z) → App(App(x z)App(y z))

App(App(K x) y) → x

App(I x) → x

Some common combinators are the B, C, M combinators, defined as such:

B := S(KS)K (bluebird)
C := S(BBS)(KK) (cardinal)
M := SII (mockingbird)

One way to simulate CL in Closure Calculus is similar to the usual way that
it is simulated in the pure λ-calculus:

S := λ[I]x.λ[I, x]y.λ[I, x, y]z.(x@z)@(y@z)

K := λ[I]x.λ[I, x]y.x

I := λ[I]x.x

86

Given these, the Y combinator is simply defined as λ[I]x.S@I@I@x. The B
combinator may be defined as λ[I]x.S@(K@S)@K@x.

The alternate way to simulate CL is given by embedding the definitions of
S,K, I in an extension. Call this function eval3.

eval := λ[I]x.(I :: s 7→ S :: k 7→ K)@x

It is able to evaluate any arbitrary expression in combinatory logic, written in a
form where App is replaced with @. The so-called bird combinators (Smullyan
2012) can be defined as such:

B := s@(k@S)@k (bluebird)
C := s@(B@B)@S)@(K@K) (cardinal)
M := s@I@I (mockingbird)

The M Combinator is perhaps the more interesting example. Observe that
I is not actually in boldface. Nor is there a mapping from a variable to an
identity mapping. Instead, the I is the identity operator from CCN itself. This
is how it reduces:

(eval M z) = (λ[I]x.(I :: s 7→ S :: k 7→ K)@x) (s@I@I) z

→ ((I :: x 7→ (s@I@I) (I :: s 7→ S :: k 7→ K)@x) z

→∗ ((I :: s 7→ S :: k 7→ K :: x 7→ (s@I@I)) (s@I@I)) z

→∗ ((λ[I :: x 7→ I]y.λ[I, x, y]z.(x@z)@(y@z)) I) z

→ (λ[I :: x 7→ I :: y 7→ I]z.(x@z)@(y@z)) z

→∗ z@z

The M combinator opens up the power of full recursion. The Y combinator
is defined as S(K(M))(S(S(KS)K)(K(M)). Encoding it and reduction is left
as an exercise to the reader.

Via CL, there may exist a route to defining Closure Calculus in the terms
of Closure Calculus.

3An alternative to this eval is eval := λ[I :: s 7→ S :: k 7→ K]x.I@x. The results are the
same.

87

8.5 Extracting the Body of an Abstraction:
While not intensional in the traditional sense, Closure Calculus allows for ex-
traction of the body of an abstraction. Consider the following program and
application in CCN:

F := λ[I]x.a;

T := λ[F]y.z@y;

(T b) = (λ[F]y.z@y) b

→ (F :: y 7→ b)(z@y)

→ (F :: y 7→ b) z) ((F :: y 7→ b)y)

→ (F z) ((F :: y 7→ b)y)

→ ((I :: x 7→ z)a) ((F :: y 7→ b)y)

→ (I a) ((F :: y 7→ b)y)

→ a ((F :: y 7→ b)y)

→ a b

→ a@b

This could of course go really wrong:

F := λ[I]x.a;

T := λ[F]y.z@c;

(T b) = (λ[F]y.z@c) b

→ (F :: y 7→ b)(z@c)

→ (F :: y 7→ b) z) ((F :: y 7→ b) c)

→ (F z) ((F :: y 7→ b) c)

→ ((I :: x 7→ z)a) ((F :: y 7→ b) c)

→ (I a) ((F :: y 7→ b) c)

→ a ((F :: y 7→ b) c)

→∗ aa

→ a@a

The structure of the extension provides enough guarantees that if a variable
name matches, then its substitution is produced. This allows for a well formed
macro system to be constructed.

8.6 Concerning Identity
The identity function is heavily used in functional programming. In λ-calculus,
the identity abstraction is written λx.x. Converting the identity abstraction to

88

Closure Calculus yields λ[I]x.x and λIJ .
However, it should be noted both flavours of Closure Calculus come equiped

with the identity operator. They may be used instead of defining an identity
abstraction. Consider the Pred function for Scott encoded numbers:

id := λ[I]x.x

Pred := λ[I]n.n@0@id;

Pred1 = (λ[I]n.n@0@id)1

→ (I :: n 7→ 1)(n@0@id)

→ ((I :: n 7→ 1) (n@0)) ((I :: n 7→ 1) id)

→ (((I :: n 7→ 1)n) (I :: n 7→ 1) 0) ((I :: n 7→ 1) id)

→ (1 (I :: n 7→ 1)0) ((I :: n 7→ 1) id)

→∗ (10) ((I :: n 7→ 1) id)

≡ ((λ[I :: n 7→ 0]f.λ[I :: n 7→ n :: f 7→ f]x.x@n)0) ((I :: n 7→ 1) id)

→∗ (λ[I :: n 7→ 0 :: f 7→ 0]x.x@n) ((I :: n 7→ 1) id)

→∗ (λ[I :: n 7→ 0 :: f 7→ 0]x.x@n) id

→∗ (I :: n 7→ 0 :: f 7→ 0 :: x 7→ id) (x@n)

→∗ 0

Pred2 := λ[I]n.n@0@I;

Pred2 1 = (λ[I]n.n@0@I)1

→∗ (λ[I :: n 7→ 0 :: f 7→ 0]x.x@n) ((I :: n 7→ 1) I)

→ (λ[I :: n 7→ 0 :: f 7→ 0]x.x@n) I

→ (I :: n 7→ 0 :: f 7→ 0 :: x 7→ I) (x@n)

→∗ 0

Reductions using the I term results in a shorter reduction sequence. This is
a good form of optimisation for compilers as well.

89

Chapter 9

Discussions

The results presented in the previous chapters - implementing an interpreter for
both calculi - yields some important implications for developing compilers for
functional programming languages. This chapter discusses these implications.

Two results follow from the previous chapters. The first is that reductions
in Closure Calculus is faster than reductions in the pure λ-calculus.

Second, is that the interpreter for Closure Calculus is simpler than that of
the pure λ-calculus. This is across all metrics of complexity - an interpreter
of Closure Calculus takes fewer lines of code to implement, and has a lower
cyclomatic complexity than an interpreter for the pure λ-calculus.

This has some implication on programming language implementors, the main
stakeholders in this report. So the first section of this chapter is dedicated to
the implications.

There may of course be some potential objections, which are laid out in the
second section.

In order to answer these objections, a survey of compilation methodologies
for functional programming language is presented. Finally, the objections are
answered

A response to these objections would require a cursory look at how industrial
functional programming languages are compiled.

9.1 What Does This Mean For Programming Lan-
guage Theory

While this report concerns the comparison of the pure λ-calculus to Closure
Calculus, the learnings transfer to programming language theory as well. Much
of the report concerns the benchmarking of term reductions in both lambda
calculi as if they were programming languages. This was not accidental. Rather,
the goal is to persuade stakeholders that the qualities of Closure Calculus makes
it ideal as a theoretical basis for functional languages.

90

9.2 Three Potential Objections
We begin by addressing potential objections that may arise from the previous
chapters.

The first objection that may arise is that typical interpreters of the pure
λ-calculus are not implemented the way it was implemented for this report.

The second objection might be that industrial programming languages do
not use the pure λ-calculus.

A third and final objection might be that the implementation are of untyped
calculi, which has little utility in real-life programming languages.

9.3 A Survey of Compilation Methodologies for
Popular Programming languages

In order to properly respond to the potential objections, we must take a detour
to look at the compilation methodologies of two popular functional programming
languages. First we will look at the compilation methodologies of Haskell, then
the same is done for Ocaml.An outline suffices for the considerations.

Haskell first parses the source code into an AST called HsSyn. The source
code, represented as HsSyn goes through a series of checks before being de-
sugared into GHC Core. GHC Core is a very simple typed λ-calculus based on
System Fω. After being translated into GHC Core, some work is done to sim-
plify the terms and prepare it for conversion into the language of the Spineless
Tagless G-machine (STG).

STG is the abstract machine that Haskell runs on (Peyton Jones and Salkild
1989; Peyton Jones 1992). In the STG, Core terms are translated into STG
bindings. STG bindings has the following form:

f = {v1, v2, . . . vn}
free vars

λ
update flag

πx.e

lambda-form

From an implementation point of view, f is a pointer to a heap allocated
closure. The closure is a lambda-form, containing a list of free variables, an
update flag π and a body, e, which is any valid STG expression. Each of the
free variables in the list of free variables is a pointer to a memory location.

Now let us consider another form of terms readers would by now be familiar
with - the shorthand notation for a CCN term:

λ[I,
"free" vars

v1, v2, . . . vn].x.t

Observe that the lambda form and the abstraction form of Closure Calculus
are very similar! We will return to discussing this form in the later sections.

For now, let us turn our attention to the compilation phases of OCaml.
Ocaml compiles to machine code first by parsing the source code and prepro-

cessing it using Camlp4. After typechecking and inferencing is done, the source

91

code is desugared into λ-form. Like GHC Core, the λ-form of OCaml is a small
λ-calculus. However, unlike GHC Core, it is untyped. Simplification of terms
is performed and then a closure conversion is performed.

A closure is defined as follows (unrelated fields have been removed for read-
ability):

and ufunct ion = {
l a b e l : f unc t i on_labe l ;
a r i t y : i n t ;
params : (Backend_var . With_provenance . t ∗ value_kind) l i s t ;
r e turn : value_kind ;
body : ulambda ;
env : Backend_var . t opt ion ;

}

Observe that this is very similar to the alternative representation of a term
as shown in the Alternative Representations of Terms section in the Appendix,
which bears repeating here with fields renamed to match the definition of ufunc-
tion:

type Closure s t r u c t {
env Term // env
param Var iab le // bound va r i ab l e
body Term // body

l a b e l s t r i n g // meta name f o r n i c e r pre t ty p r i n t i n g
}

The ufunction data type is simply an uncurried version of the Closure data
type - an optimisation that is fairly trivial to implement.

The key insight however, is that Ocaml, like Haskell, relies on conversion to
closures in its compilation phase.

In fact, a cursory analysis of all compiled functional programming languages
show that at some point in their compiler phases, closure conversion is required.
These closure conversion phases usually sit close to the end of the compilation
pipeline, merely a few steps away from compilation to binary. However, be-
fore the closure conversion phases, the surface syntax of the languages are first
translated into some form of non-closure λ-calculus (GHC Core for Haskell, and
λ-form in Ocaml). Thus the compilation process for functional programming
languages may be generalised to a process that looks as follows (ρ denotes an
arbitrary translation process):

Program
(surface syntax)

ρ
λ form

ρ
closure

ρ Binary Program

9.4 Answering the Objections
We are now ready to answer the objections that may arise.

92

Objection 1 - An Intentionally Naïve Pure λ-Calculus In-
terpreter was Used for Comparison
The first objection is that the comparison may be unfair, for typical interpreters
of the pure λ-calculus are not implemented the way it was implemented for
this report. Recall that the interpreters for this report are implemented as
tree-walking interpreters. Substitutions are replaced directly in the term itself.
Usual interpreters of the pure λ-calculus use a variety of augmentations, such
as de Bruijn indices and environment-based abstract machines. Three answers
are given for this objection.

The first answer is that using augmented or multi-pass interpreters is akin to
comparisons against a different lambda calculus. Secondly, an argument could
be made that these augmentation only serve to make an interpreter more com-
plex - the point of the exercise is to compare the simplest possible interpreters.
Lastly, using augmented interpreters makes “comparing the performance char-
acteristics of the calculi” a meaningless statement.

Consider the following reductio ad absurdum argument: imagine that there
exists an ideal interpreter for each calculus. Each of these interpreters involve
many translation steps that translate the syntax of the calculus to machine
language. All optimisations that can be performed are performed with the aim
of generating the fastest binary program. Given that the interpreters are ideal
translators, any program written in either calculus will converge to the same
binary program. Therefore any benchmark is useless. Instead, the benchmarks
should be done on the most naïve form - if both interpreters are equally naïve
in implementation then we may conclude that the differences are not due to
optimisations.

Objection 2 - Industrial Programming Languages Do Not
Use The Pure λ-Calculus
The second objection is that industrial programming languages surely do not use
the pure λ-calculus, so a comparison with the pure λ-calculus is moot. However,
this is easily answered by the fact that all functional programming languages
are rooted somewhat in the pure λ-calculus, in that few changes are necessary
in order to translate it to a slightly different calculus like System F. Further, the
pure λ-calculus is universally understood by functional programming language
implementers. A comparison of Closure Calculus to the pure λ-calculus is both
instructive and illuminating of what is missing.

Objection 3 - Untyped Calculi Have Little Utility in Real
Life
The answer to the third objection - that untyped calculi are of little utility in
real life - is answered by OCaml, which uses an untyped λ-calculus under the
hood. If it is of utility to a popular industrial functional programming language,
surely the third objection is based on a false premise.

93

The answers to the objection points to where Closure Calculus will excel:
being an intermediate representation (IR) for a higher level programming lan-
guage.

9.5 On The Oddity of x 7→ x

Now we return to a discussion of Closure Calculus terms. It is remarked upon
in the original paper outlining Closure Calculus and in Section 4.2 of Chapter 4
that the requirement to add a x 7→ x to the environment of an abstraction term
was a little odd.

To a programming language implementor however, the reasoning is obvious.
In practice all variables are associated with a context. A scope or context is
usually implemented as mappings of labels (variables) to memory locations that
contains a value.

Two observations can be made. First, the memory must be allocated for the
value that the variable represents1. The second observation is more subtle: that
variables play dual roles: first as a label for lookup within a context, second
as a memory location. The subtlety is highlighted when phrased thus: There
is an abstract component to variables and a concrete component to variables.
Thus the context/environment/scope is a bridge from the abstract (label) to
the concrete (memory location).

Recall from Chapter 4 that the extension form serves a dual purpose - as the
environment to a closure and as a substitution. The particular genius of this
purposeful conflation of notions allows for a principled transition from abstract
to concrete. A comparison is warranted.

Let us consider once again, the following pure λ-calculus term:

λx.λy.x

An abstract Haskell-like or OCaml-like implementation would perform a
closure conversion, yielding a data structure that looks like this:

Name

λx.λy.x

FV

∅
Body Name

λy.x

FV

x :

Body

x

Value

Figure 9.5.1: An abstract data structure representation of λx.λy.x

1A well-known programming language implementor once confided in me that “reality hates
sum types”

94

Observe that the memory location that the free variable x is pointing to is
unfilled. However, a fact must not go unnoticed: the memory is allocated to
hold a value when it arises. We will return to this fact shortly.

Now, let’s say at run time, the term λx.λy.x was applied to a value, 100.
The runtime system creates fills in the value in the pre-allocated memory. The
resulting concrete data structure looks like this:

Name

λy.x

FV

x :

Body

x

Value
100

Figure 9.5.2: Result of ((λx.λy.x) 100) represented in the same format as above

The process of filling the pre-allocated memory with the value bound to x in
the FV field is a meta-operation - an operation outside the defined confines of
the calculus. It took very many years of analysis before such meta-theory could
be formalised (Appel 2007).

The conflation of the two roles that variables play - one as a label and one
as a pointer to memory - shows up immediately in Closure Calculus. x 7→ x
is a syntactic representation of a mapping from the abstract (a label) to the
concrete (a memory location). To make things work correctly, the value is itself
a label. An illustration is warranted, so let’s return to the example above, but
this time, with Closure Calculus terms.

The term under consideration is λ[I]x.λ[I, x]y.x. The following data struc-
ture represents it well:

Name

λ[I]x.λ[I, x]y.x

σ

I

Body Name

λy[I, x].x

σ

I, x 7→
Body

x

Value
x

Figure 9.5.3: Abstract data structure representation of λ[I]x.λ[I, x]y.x

Upon application to a value, 100, the resulting data structure is similar to
the one above.

95

Name

λy[I, x].x

σ

I, x 7→
Body

x

Value
100

Figure 9.5.4: Result of ((λ[I]x.λ[I, x]y.x) 100)

The rule that allowed for a principled reduction of terms is

(σ :: x 7→ t)(ρ :: z 7→ u) ⇀ (σ :: x 7→ t)ρ :: z 7→ (σ :: x 7→ t)u

It does not privilege either the blue or red subterms on the left hand side.
However, in a typical reduction, the blue subterm corresponds to a substitution
and the red subterm corresponds to a closure environment. Mapping a variable
to itself is therefore the most natural thing to do. In short, Closure Calcu-
lus presents a principled way of mapping abstract terms to concrete values in
memory locations. This clarity would undoubtedly lead to better methods of
understanding memory use.

96

Chapter 10

Conclusion

Closure Calculus is a better lambda calculus than the pure λ-calculus. It is
simpler than the pure λ-calculus, leading to simpler implementations. Closure
Calculus is also more performant than the pure λ-calculus.

Comparisons of Closure Calculus against the pure λ-calculus was done by
implementing an interpreter for each of the two flavours of Closure Calculus
(CCN and CCDB) and two interpreters for the pure λ-calculus, representing the
pure λ-calculus with a Call-By-Value evaluation strategy and the Call-By-Name
evaluation strategy respectively. To compare simplicity of implementation, the
following metrics were used: Lines of Code, Cyclomatic Complexity and the
COCOMO metric. To compare performance of programs in either calculi, exe-
cution time and memory were compared.

The comparisons show that Closure Calculus is simpler to implement when
compared to the pure λ-calculus. This is attributable to the fact that the meta-
theory requirements for Closure Calculus are either trivial (variable equality in
CCN) or non-existent (CCDB).

When comparing absolute time, Closure Calculus terms reduce to normal
form faster than an equivalent pure λ-calculus term. Reduction to normal forms
also use less memory than reduction of an equivalent term in the pure λ-calculus.
This contributes to the reduction speed of the pure λ-calculus.

Being simpler and faster than the pure λ-calculus, it can be said that Closure
Calculus is better than the pure λ-calculus.

This has implications on programming language design. Programming lan-
guage implementors should seriously consider using Closure Calculus as a the-
oretical basis for functional programming languages as doing so allows for func-
tional programming languages that are simpler to implement, and yet have
faster execution of programs.

97

Bibliography

Abadi, M., Cardelli, L., Curien, P.-L. and Lèvy, J.-J. 1990, ‘Explicit Substi-
tutions’, Conference Record of the Seventeenth Annual ACM Symposium on
Principles of Programming Languages, San Francisco, California, ACM, pp.
31–46.

Abelson, H., Sussman, G. J. and with Julie Sussman 1996, Structure and Inter-
pretation of Computer Programs, 2nd edn., MIT Press/McGraw-Hill, Cam-
bridge.

Appel, A. W. 2007, Compiling with Continuations, Cambridge University Press.

Archambault-Bouffard, V. and Monnier, S. ????, ‘Implementation of Explicit
Substitutions: From λσ to the Suspension Calculus’, .

Baader, F. and Nipkow, T. 1999, Term rewriting and all that, Cambridge uni-
versity press.

Barendregt, H. 1985, The Lambda Calculus: Its Syntax and Semantics, Studies
in logic and the foundations of mathematics, North-Holland.

Bezem, M., Klop, J. W. and de Vrijer, R. 2003, ‘Term rewriting systems by
terese. number 55 in cambridge tracts in theoretical computer science’, .

Bezem, M., Klop, J. W. and de Vrijer, R. 2006, ‘Terese lite: Excerpts from the
book term rewriting systems by terese’, .

Boehm, B. W. 1984, ‘Software engineering economics’, IEEE Trans. Softw. Eng.,
vol. 10, no. 1, pp. 4–21.
URL: http://dx.doi.org/10.1109/TSE.1984.5010193

Boyter, B. 2018, ‘scc’, .
URL: https://github.com/boyter/scc

Church, A. 1932, ‘A Set of Postulates for the Foundation of Logic’, Annals of
Mathematics, vol. 33, no. 2, pp. 346–366.

Church, A. 1936, ‘An Unsolvable Problem of Elementary Number Theory’,
American Journal of Mathematics, vol. 58, no. 2, pp. 345–363.

98

DeRemer, F. and Kron, H. 1975, ‘Programming-in-the large versus
programming-in-the-small’, SIGPLAN Not., vol. 10, no. 6, pp. 114–121.
URL: http://doi.acm.org/10.1145/390016.808431

Felleisen, M., Findler, R. B. and Flatt, M. 2009, Semantics Engineering with
PLT Redex, 1st edn., The MIT Press.

Go Authors, T. 2018, ‘The go programming language specification’, .
URL: https://golang.org/ref/spec

Haskell Language Authors, T. 2014, ‘Haskell language’, .
URL: https://www.haskell.org/

Jay, B. 2017, ‘Intensional-computation, Repository of Proofs in Coq’, .
URL: https://github.com/Barry-Jay/Intensional-computation

Jay, B. 2018, ‘Closure Calculus’, .

Jay, B. and Vergara, J. 2014, ‘Confusion in the church-turing thesis’, .

Kleene, S. C. and Rosser, J. B. 1935, ‘The Inconsistency of Certain Formal
Logics’, Annals of Mathematics, vol. 36, no. 3, pp. 630–636.

Klop, J. W. 1990, Term rewriting systems, Centrum voor Wiskunde en Inform-
atica.

Knuth, D. E. 1991, ‘Textbook examples of recursion’, Artificial Intelligence and
Mathematical Theory of Computation. Papers in Honor of John McCarthy,
pp. 207–229.

Knuth, D. E. 1997, The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms, Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

McCabe, T. J. 1976, ‘A complexity measure’, IEEE Transactions on software
Engineering, , no. 4, pp. 308–320.

Mellies, P.-A. 1995, ‘Typed λ-calculi with Explicit Substitutions May Not Ter-
minate’, Dezani-Ciancaglini, M. and Plotkin, G. (eds.) Typed Lambda Calculi
and Applications, Springer Berlin Heidelberg, pp. 328–334.

Michaelson, G. J. 1989, ‘An introduction to functional programming through
lambda calculus’, International computer science series, .

Morazán, M. T. and Schultz, U. P. 2008, ‘Optimal Lambda Lifting in Quad-
ratic Time’, Chitil, O., Horváth, Z. and Zsók, V. (eds.) Implementation and
Application of Functional Languages, Springer Berlin Heidelberg, pp. 37–56.

Munoz, C. A. 1996, ‘Confluence and Preservation of Strong Normalisation in
An Explicit Substitutions Calculus’, Proceedings of the 11th Annual IEEE
Symposium on Logic in Computer Science, LICS ’96, IEEE Computer Society,
pp. 440–7.

99

Perlis, A. J. 1982, ‘Special feature: Epigrams on programming’, SIGPLAN Not.,
vol. 17, no. 9, pp. 7–13.
URL: http://doi.acm.org/10.1145/947955.1083808

Peyton Jones, S. L. 1992, ‘Implementing Lazy Functional Languages on Stock
Hardware: the Spineless Tagless G-machine’, Journal of functional program-
ming, vol. 2, no. 2, pp. 127–202.

Peyton Jones, S. L. and Salkild, J. 1989, ‘The spineless tagless g-machine’, Pro-
ceedings of the Fourth International Conference on Functional Programming
Languages and Computer Architecture, FPCA ’89, ACM, New York, NY,
USA, pp. 184–201.
URL: http://doi.acm.org/10.1145/99370.99385

Pike, R. 2012, ‘Go at google: Language design in the service of software engin-
eering’, .

Reynolds, J. C. 1972, ‘Definitional Interpreters for Higher-order Programming
Languages’, Proceedings of the ACM Annual Conference - Volume 2, ACM
’72, ACM, pp. 717–740.

Smullyan, R. 2012, To Mock a Mocking Bird, Knopf Doubleday Publishing
Group.
URL: https://books.google.com.au/books?id=NyF1kvJhZbAC

Steele, G. L., Jr. 1978, ‘Rabbit: a Compiler for Scheme’, Tech. rep.

Thompson, S. 1991, Type Theory and Functional Programming, Addison Wesley.

Tromp, J. 2018, ‘Functional bits : Lambda calculus based algorithmic informa-
tion theory’, .

Turing, A. M. 1937, ‘On computable numbers, with an application to the
entscheidungsproblem’, Proceedings of the London mathematical society,
vol. 2, no. 1, pp. 230–265.

Wright, A. K., Felleisen, M. et al. 1994, ‘A Syntactic Approach to Type Sound-
ness’, Information and computation, vol. 115, no. 1, pp. 38–94.

100

Appendix

A Primer on Go
This section introduces the Go programming language in a succinct manner.
Readers familiar to the language or readers disinterested in the details may
opt to skip it. The section proceeds as follows: first, sytactic idiosycracies
are introduced. This is followed by the introduction of features that allow
for constructing algorithms. Last, features that allow for constructing data
structures are introduced.

Go is an open source, strongly-typed, garbage collected programming lan-
guage from Google for the purposes of systems programming. The language
was specifically designed for software development in the large (as defined by
DeRemer and Kron (1975))(Pike 2012). This to say, Go is well suited to large
teams of people working on one program. Furthermore, unlike most major pro-
gramming languages, Go has a finalized specification (Go Authors 2018). The
stability is ideal for comparisons of performance.

Syntactically, // denotes the start of a comment in Go source code. In this
report it may be used to also add commentaries to programs written in Go.

Go programs are organized in packages. Packages contain program entities
such as variables or types.

An identifier is a name given to a program entity. Identifiers take two forms:
exported or unexported. Exported identifiers start with a capital letter while
unexported identifier start with a small letter. Exported identifiers are accessible
from outside the package it was defined in while unexported identifiers are local
to the package it was defined in. A list of predeclared identifiers is exempt from
this rule.

Go supports the usual notion of computational variables and constants.
Functions are defined by the func keyword. The func keyword is also used
to define methods, which are functions associated with an object.

Example. I is a function that takes an int and returns an int.

func I (a i n t) i n t {
re turn a

}

101

Conditionals are supported by means of an if statement. When there are
many conditions, a switch table is used. These are useful for implementing
operational semantics.

Example. The following snippet implements the Call-By-Value operational
semantics of the pure λ-Calculus with a switch table. It is not unlike pattern-
matching guards used in functional programming languages:

switch at := a . (type) {
case Var iab le :

r e turn a
case Lam:

return a
case App :

at .B = i n t e r p r e t e r . evalCBV(at .B)
at .A = i n t e r p r e t e r . evalCBV(at .A)
return at

}

There is a minimalistic type system for the language. Type definitions serve
dual roles in defining a type, and defining its memory layout. This is useful for
having fine grain control over structuring of data.

The primary way of structuring data in Go is with a struct. The struct has
been briefly introduced in the previous sections without explanations. A struct
defines the layout of memory in the computer. It is comprised of a sequence of
fields, each of which has a name and a type. A struct may be empty, in which
no memory is allocated to it. A struct may also have an embedded field - a
field with no explicit name. The embedded field is specified as a type name. An
example is more illumating, so one follows.

Example. foo is a type definition with the layout defined by a struct.

type foo s t r u c t {
bar
A in t
b f l o a t 6 4

}

Several observations can be made. foo is an unexported type. This means that
foo may not be accessed from outside the package it was defined in. In practice
this means external functions may not create values of type foo. However,
values of type foo may still be created within the local package and used by
external functions.

Values of type foo are comprised of some value of type bar, a value of type
int, called A and a value of type float64, named b. Each value of type foo
is arranged in the order it was defined in computer memory. If bar takes 4
bytes, while both int and float64 each takes 8 bytes, then we may visualise

102

the layout as such1:

bar A b

Now we turn our attention to the fields themselves. bar is an embedded field
in foo. It is unexported, so it may not be accessed from outside the package it
was defined in. The same is true for b. Meanwhile, A is exported. It is accessible
from outside the package. For example, an external function may be written
to change the value of A directly. Exported fields of unexported struct types
are generally considered bad form but allows for some programs to be written
which would otherwise been unable to be written.

Another important data structure that comes built in to Go is a slice. But
first, the array type must be defined. An array is a contiguous block of memory
with N elements of a type, where the size of each element is determined by the
size of the type. An array is written [N]T where N is a meta-variable standing
for a natural number and T is a meta-variable standing for a type. The size
of an array type is static and is part of the type definition. A value with type
[2]int does not have the same type as a value with type [5]int.

Having introduced the array type, we can focus on the slice. A slice type
is like an array type, except its size is dynamic. It is written []T, where T is
a meta-variable standing for a type. Being dynamically sized means we do not
have to worry about allocating or deallocating memory, as it is handled by the
language itself.

Go also provides built in support for hashmaps. A hashmap is a data struc-
ture for implementing associative arrays. A hashmap type is written map[T]U,
where T and U are meta variables for types of the key and value respectively.

We may define new types in Go that has the layout of already-defined types.
This is particularly useful for using types as a guard against bad values.

Example. In the following snippet, foo is a new type but has the layout of an
int type. bar is another new type that has the layout of the foo type.

type foo i n t
type bar foo

A value of type foo does not have the same type as a value of type bar. They
may not be used interchangeably.

Last but not least, Go has the notion of pointers. A pointer points to a
location in memory. Most types are addressable, that is, we may take the
address of the value of that type. A pointer is written *T, where T is a meta-
variable standing for a type. We may take the address of a variable by writing
&x, where x is an addressable identifier. A variable holding a pointer type may
be dereferenced by writing *x.

1This visualization features proportional sizing of fields. For the rest of the report, visual-
isations of structs will not take into account the size of fields

103

There are many more features of the Go programming language. However,
this is all the basics necessary to understand the implementation of the calculi.

Alternative Representations of Terms
This section discusses the potential alternative representation of terms in the
interpreters implemented. First a brief description of Go’s interface types is
given, then the alternative representation is given. Last a rationale is given on
why the alternative representation is not suitable for the purposes of this report.

Interface Types, A Brief (de)Tour
A brief detour is necessary as a key concept required is that of an interface type
in Go. Interface types are the only way of supporting type polymorphism in
Go.

Briefly, an interface type is a type defined by a set of methods. So long
as a type T implements all the methods of an interface type I, then we say T
implements I.

Let there be an interface type Stringer and three other types T , U and V,
which are defined in the following snippet:

type S t r i n g e r i n t e r f a c e {
St r ing () s t r i n g

}
type T s t r i n g
type U in t
type V bool

func (u U) St r ing () s t r i n g { re turn "" }
func (v V) St r ing () s t r i n g { return "" }
func (v V) Greet () s t r i n g { re turn " h e l l o " }

This program snippet says that T is internally represented as a string, while U is
internally represented as an integer and V is internally represented as a boolean.
The types U and V each has a method called String(), which returns a value of
type string (an empty string). The type T does not have any methods defined
on it. Additionally, note that V has a method Greet, which also returns a string
(“hello”).

U and V each implements Stringer. T does not.
In the following snippet, only a value of type U or a value of type V may

inhibit the variable foo.

var foo S t r i n g e r
foo = U(1) // OK
foo = T(" h e l l o ") // compi la t ion e r r o r
foo = V(true) // OK

104

Notice that foo may take values from more than one type. This idea is very sim-
ilar to typeclasses in Haskell, whose primary motivation was to provide similar
kinds of ad-hoc type polymorphism.

Now, let’s say foo is inhabited by a value of type V. Trying to access the
Greet method of type V will cause a compilation error. This is because the type
Stringer only has one method it knows about. This kind of type polymorphism
on its own is often valuable enough. However, there may be times we would
need to know which concrete type inhabits the variable foo. We would need to
query the structure of the type.

We query the structure of the value of foo by means of a switch statement
as follows:

switch bar := foo . (type){
case U:

// do something
case V:

// do something
d e f au l t :

}

The default keyword is a special syntax to allow us to define the behaviour of
a program when the concrete type is an unhandled case.

Recall that the interface types are fulfilled by any type that has a method.
This allows for highly extensible software libraries. However, one would need to
deal with unhandled cases. One does this by defining the behaviour under the
default case.

Although there exists a calculus that allows programmers to safely add cases
to existing functions (i.e. the Pattern Calculus), language features like these may
not be as beneficial as thought for software engineering in the large2.

Alternative Representation of Terms
Having described the interface type and ways of querying it, we may now proceed
with exploring the alternative representation of terms.

We start by first describing a type for Term, as follows:

type Term i n t e r f a c e {
isTerm ()

}

As interface types support ad hoc polymorphism, any term may implement the
set of methods defining the type. The use of an unexported function limits
where a Term may be defined to only within a local package. This solves the
issue of having potentially unhandled cases.

Then we describe the various form a term may take. Using CCN as an
example, we can describe the six forms a term may take as follows:

2This was explained to me after I had put a change request to extend Go with Pattern
Calculus-esque case extensions.

105

type Var iab le s t r i n g

type App s t r u c t { A, B Term }

type Tag App

type I s t r u c t {}

type Ext s t r u c t {
Ext Term // Parent env
Var iab le // Exp l i c i t Sub
Term // Exp l i c i t Sub

}

type Closure s t r u c t {
Ext Term // env
Var iab le // bound va r i ab l e
Term // body

MetaName s t r i n g // meta name f o r n i c e r pre t ty p r i n t i n g
}
func (t Var iab le) isTerm () {}
func (t App) isTerm () {}
func (t Tag) isTerm () {}
func (t Ext) isTerm () {}
func (t Closure) isTerm () {}
func (t I) isTerm () {}

This corresponds well to the BNF of CCN. By defining a method called isTerm
to each of the types defined here, we may now have represented the terms
of the pure λ-calculus as the interface type Term. An interpreter is simply a
function that queries the internal structure of a Term to decide which function
to transition to next.

As befitting a programming language designed around software development
in the large, this representation of terms is very easy to understand. In fact,
this would be the canonical way to implement a λ-calculus in Go.

So Why Not Use This Representation?
Two main objections arise. Both objections to using this representation revolve
around the runtime system of Go. We wish to compare interpreters for the
pure λ-calculus and Closure Calculus. Our comparison is done by means of
benchmarking and profiling of the interpreter.

Thus the first objection is that we want our runtimes for the interpreters

106

to be as pure as possible - in that the runtime system of Go should interfere
as little as possible. The use of interface types leverages the runtime system of
Go quite a bit. In the runtime profiles, they show up as runtime.convT2I or
runtime.convT2E. The additional noise in the data decreases confidence in the
analyses.

The second objection arises from the consequence of relying on the runtime
system of Go. Go is a garbage collected programming language. Use of interface
types causes heap allocations which may trigger a garbage collection cycle. This
would lead to non-determinism of program execution, affecting the statistics
collected. Clearly this won’t do.

With these two objections, it is now clear why the representation as presented
in Chapter ?? was chosen. It was chosen to minimise work done by the Go
runtime system, such that maximal amounts of work is done by the interpreters
instead. This is done so that a fair and objective comparison between the
implementations of the calculi may be made.

107

On the Confusion of the Church-Turing Thesis
This section discusses the confusion of the Church-Turing thesis in brief. A
significantly more detailed exposition is to be found in (Jay and Vergara 2014).

Briefly, the Church thesis states the following3:

∀f : NΛ → NΛ, f is effectively calculatable

Where NΛ is a natural number encoded as a λ-term. This statement says
that effectively calculable, and hence general recursive.

Turing’s thesis may be stated in the brief as the following4:

∀f : S → S, f is computable

This statement states that a function from a string S to S is considered
computable if there exists a Turing Machine may compute it.

Turing had focused the majority of his paper on computable numbers. This
was necessary in order to use a Gödelian approach to proving that the Entscheidung-
sproblem cannot be solved. He first demonstrated that one may construct a
Turing Machine to compute any function of natural numbers, albeit as encoded
in what we would call bit-strings in modern times.

Kleene later equated Turing’s notion of computability with both Church’s
notion of effectively calculatability and Gödel’s general recursivity in his The-
orem XXX.

However, consider a Universal Turing Machine may simulate any other Tur-
ing machine. So what of the following functions?

g : P → P, where P : S → S

Herein lies the problem with having a confusion. If we are to accept that
Church’s thesis is equivalent to Turing’s thesis, then we must accept that g are
computable by λ-calculus. It isn’t. To wit, given two closed terms of the pure
λ-calculus in NF, it is not possible to define an equality relation. λ-calculus
simply does not provide enough intensionality to be able to realize as many
functions of g as the Turing model of computation can. This is a particularly
important factor limiting the space of designing programming languages.

Does it really matter? In some sense, no. Recalling that all functions may
be encoded as a Gödel number, consider the cardinality of all natural numbers,
ℵ0. It is much smaller than the cardinality of is power set 2ℵ0 , of which P lies
in. A pessimistic viewpoint would be to merely consider Church’s thesis to be
equivalent to Turing’s thesis, and shutting off any more explorations in to a 2ℵ0

3a more formal notion of Church’s thesis is the following statement: ∀f : N → N,∃e∀i∃k
such that T (e, i, k) ∧ U(k, i), where T is Kleene’s T predicate and U is a function that will
provide an answer if T determines that the function halts. i is the input and k is a computable
function encoded as a Gödel number and e is the index of the halting state. Ironically this is
not expressible in λ-calculus, but is expressible in the Turing model of computation.

4Turing was more descriptive but less rigorous than Church was. The statement is a very
rough formalisation of Turing’s thesis

108

space. A more optimistic viewpoint would be to acknowledge the very minor
deficiencies of λ-calculus, and set forth to discover better calculi. Better calculi
informs better, safer programming language paradigms. This is a good thing to
hold on to when faced with doubt in holding on to the optimistic view.

109

